【题目】已知函数.
(1)当时,讨论的单调性;
(2)若对任意的恒有成立,求实数的取值范围.
【答案】(1)当时,递减区间为,当时,递减区间为,递增区间为,当时,递减区间为,递增区间为;(2).
【解析】
试题分析:(1)求出函数的导数,通过讨论的范围,确定导函数的符号,从而求出函数的单调区间;(2)问题转化为恒成立,根据函数的单调性求出的值,从而求出的取值范围.
试题解析:(1),令,得,
当时,,函数的定义域单调递减;
当时,在区间上,单调递减,在区间上,单调递增;当时,在区间上,单调递减,在区间上,单调递增.
故当时,递减区间为;
当时,递减区间为,递增区间为;
当时,递减区间为,递增区间为.
(2)由(1)知当时,函数在区间单调递减,
所以当时,,
问题等价于:对任意的,恒有成立,
即,因为,∴,所以实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分别是BC,PC的中点。
(1)求证:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线:x=6,圆与轴相交于点(如图),点P(-1,2)是圆内一点,点为圆上任一点(异于点),直线与相交于点.
(1)若过点P的直线与圆相交所得弦长等于,求直线的方程;
(2)设直线的斜率分别为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家计划在2012年举行商品促销活动,经调查测算,该商品的年销售量万件与年促销费用万元满足:,其中为常数,若不搞促销活动,则该产品的年销售量只有1万件,已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).
(1)将2012年该产品的利润万元表示为年促销费用万元的函数;
(2)该厂2012年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如“百鸡问题”:公元五世纪末,我国古代数学家张丘建在《算经》中提出了“百鸡问题”:“鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?”
算法设计:
(1)设母鸡、公鸡、小鸡数分别为、、,则应满足如下条件:
;.
(2)先分析一下三个变量的可能值.①的最小值可能为零,若全部钱用来买母鸡,最多只能买33只,
故的值为中的整数.②的最小值为零,最大值为50.③的最小值为零,最大值为100.
(3)对、、三个未知数来说,取值范围最少.为提高程序的效率,先考虑对的值进行一一列举.
(4)在固定一个的值的前提下,再对值进行一一列举.
(5)对于每个,,怎样去寻找满足百年买百鸡条件的.由于,值已设定,便可由下式得到:.
(6)这时的,,是一组可能解,它只满足“百鸡”条件,还未满足“百钱”.是否真实解,还要看它们是否满足,满足即为所求解.
根据上述算法思想,画出流程图并用伪代码表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与椭圆相交于两点.
(1)若椭圆的离心率为,焦距为,求线段的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com