精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1时,讨论的单调性;

2若对任意的恒有成立,求实数的取值范围

【答案】1时,递减区间为,当时,递减区间为,递增区间为,当时,递减区间为,递增区间为2

【解析】

试题分析:1求出函数的导数,通过讨论的范围,确定导函数的符号,从而求出函数的单调区间;2问题转化为恒成立,根据函数的单调性求出的值,从而求出的取值范围

试题解析:1,令,得

时,,函数的定义域单调递减;

时,在区间单调递减,在区间单调递增;当时,在区间单调递减,在区间单调递增

故当时,递减区间为

时,递减区间为,递增区间为

时,递减区间为,递增区间为

21知当时,函数在区间单调递减,

所以当时,

问题等价于:对任意的,恒有成立,

,因为,所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点, ,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA平面ABCD,PA=2,ABC=60°,E,F分别是BC,PC的中点。

1)求证:AEPD;

2)求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线:x=6,圆轴相交于点(如图),点P(-1,2)是圆内一点,点为圆上任一点(异于点),直线相交于点

(1)若过点P的直线与圆相交所得弦长等于求直线的方程

(2)设直线的斜率分别为,求证 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为

1求椭圆的标准方程;

2是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家计划在2012年举行商品促销活动,经调查测算,该商品的年销售量万件与年促销费用万元满足:,其中为常数,若不搞促销活动,则该产品的年销售量只有1万件,已知2012年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的15生产成本由固定投入和再投入两部分资金组成

12012年该产品的利润万元表示为年促销费用万元的函数;

2该厂2012年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如百鸡问题:公元五世纪末,我国古代数学家张丘建在《算经》中提出了百鸡问题鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?

算法设计:

(1)设母鸡、公鸡、小鸡数分别为则应满足如下条件

(2)先分析一下三个变量的可能值.的最小值可能为零若全部钱用来买母鸡最多只能买33只,

的值为中的整数的最小值为零最大值为50.的最小值为零最大值为100.

(3)对三个未知数来说取值范围最少为提高程序的效率先考虑对的值进行一一列举

(4)在固定一个的值的前提下再对值进行一一列举

(5)对于每个怎样去寻找满足百年买百鸡条件的.由于值已设定,便可由下式得到:

(6)这时的是一组可能解它只满足百鸡条件,还未满足百钱.是否真实解,还要看它们是否满足满足即为所求解

根据上述算法思想,画出流程图并用伪代码表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从在第一营区,从在第二营区,从在第三营区,则第一、第二、第三营区被抽中的人数分别为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相交于两点.

(1)若椭圆的离心率为,焦距为,求线段的长;

(2)若向量与向量互相垂直其中为坐标原点,当椭圆的离心率时,求椭圆长轴长的最大值.

查看答案和解析>>

同步练习册答案