精英家教网 > 高中数学 > 题目详情
3.若平面α的一个法向量为$\overrightarrow{n}$=(1,2,2),A=(1,0,2),B=(0,-1,4),A∉α,B∈α,则点A到平面α的距离为(  )
A.1B.2C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 求出$\overrightarrow{BA}$,点A到平面α的距离:d=$\frac{|\overrightarrow{BA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$,由此能求出结果.

解答 解:∵平面α的一个法向量为$\overrightarrow{n}$=(1,2,2),
A=(1,0,2),B=(0,-1,4),A∉α,B∈α,
∴$\overrightarrow{BA}$=(1,1,-2),
点A到平面α的距离:
d=$\frac{|\overrightarrow{BA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|1+2-4|}{\sqrt{1+4+4}}$=$\frac{1}{3}$.
故选:C.

点评 本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3+ax2-a2x+2.
(1)若a=-1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若a≠0 求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|$\overrightarrow{PA}$+$\overrightarrow{PB}$|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,有一块矩形空地ABCD,AB=2km,BC=4km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG,筝形的顶点A,E,F,G为商业区的四个入口,其中入口F在边BC上(不包含顶点),入口E,G分别在边AB,AD上,且满足点A,F恰好关于直线EG对称,矩形内筝形外的区域均为绿化区.
(1)请确定入口F的选址范围;
(2)设商业区的面积为S1,绿化区的面积为S2,商业区的环境舒适度指数为$\frac{S_2}{S_1}$,则入口F如何选址可使得该商业区的环境舒适度指数最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知三棱锥P-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为$\frac{{\sqrt{2}}}{6}$,则球O的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知中心在坐标原点,焦点在x轴上的椭圆,离心率为$\frac{{\sqrt{6}}}{3}$且过点(${\sqrt{5}$,0),过定点C(-1,0)的动直线与该椭圆相交于A、B两点.
(1)若线段AB中点的横坐标是-$\frac{1}{2}$,求直线AB的方程;
(2)在x轴上是否存在点M,使$\overrightarrow{MA}$•$\overrightarrow{MB}$为常数?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=x2ex
(1)求曲线f(x)在点(1,e)处的切线方程;
(2)若f(x)<ax对x∈(-∞,0)恒成立,求a的取值范围;
(3)求整数n的值,使函数F(x)=f(x)-$\frac{1}{x}$在区间(n,n+1)上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则实数k的取值范围是(  )
A.(-∞,40]B.[160,+∞)C.(-∞,40)∪(160,+∞)D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列结论正确的是(  )
A.若直线a∥平面α,直线b⊥a,b?平面β,则α⊥β
B.若直线a⊥直线b,a⊥平面α,b⊥平面β,则α⊥β
C.过平面外的一条直线有且只有一个平面与已知平面垂直
D.过平面外一点有且只有一个平面与已知平面垂直

查看答案和解析>>

同步练习册答案