精英家教网 > 高中数学 > 题目详情
15.下列函数中,以π为最小正周期的偶函数,且在(0,$\frac{π}{4}$)上单调递增的函数是(  )
A.y=sinxB.y=sin2|x|C.y=-cos2xD.y=cos2x

分析 根据正余弦函数的性质即可得答案.

解答 解:对于A:y=sinx,周期T=2π,是奇函数,∴A不对;
对于B:y=sin2|x|,是偶函数,不是周期函数,∴B不对;
对于C:y=-cos2x,周期T=π,是奇函数,∵cosx在(0,$\frac{π}{2}$)单调递减,∴-cos2x(0,$\frac{π}{2}$)上单调递增,∴C对.
对于D:y=cos2x,周期T=π,是奇函数,∵cos2x在(0,$\frac{π}{2}$)单调递减,∴D不对.
故选C.

点评 本题主要考查正余弦函数的图象和性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$csinA=\sqrt{3}acosC$,(a-c)(a+c)=b(b-c),函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$
(1)求函数y=f(x)的周期和对称轴方程;
(2)求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1,x2,总有不等式$\frac{{f({x_1})+f({x_2})}}{2}≤f({\frac{{{x_1}+{x_2}}}{2}})$成立,则称函数f(x)在该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$成立,则称数列{an}为向上凸数列(简称上凸数列),现有数列{an}满足如下两个条件:
①数列{an}为上凸数列,且a1=1,a10=28;
②对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中${b_n}={n^2}-6n+10$,则数列{an}中的第三项a3的取值范围为[7,19].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若采用系统抽样方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,抽取的人的编号在区间[241,360]内的人数是(  )
A.7B.6C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了考察某种药物治疗效果,进行动物试验,得到如下数据:
患病未患病总计
服用药10b50
未服药cd50
总计3070100
(1)求出表格中b,c,d的值;
(2)是否有95%的把握认为该药物有效.
附:
i:${k^2}=\frac{{n{{(ad-bc)}^2}}}{{({a+b})({a+d})({b+c})({b+d})}}$
ii:
P(k2≥k)0.150.050.0250.005
k2.0723.8415.0247.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则cosα-sinα的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.f(x)=x2-2x+alnx.
(Ⅰ)若a=2,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在《我是歌手》的比赛中,有6位歌手(1~6号)进入决赛,在决赛中由现场的百家媒体投票选出最受欢迎的歌手,各家媒体独立地在投票器上选出3位候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他一定不选2号,;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.
(1)求媒体甲选中5号且媒体乙未选中5号歌手的概率;
(2)ξ表示5号歌手得到媒体甲,乙,丙的票数之和,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且满足Sn=2an-2;数列{bn}的前n项和为Tn,且满足b1=1,b2=2,$\frac{T_n}{{{T_{n+1}}}}=\frac{b_n}{{{b_{n+2}}}}$.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得$\frac{{{a_n}+{b_n}+1}}{{{a_n}-{b_{n+1}}}}$恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.

查看答案和解析>>

同步练习册答案