精英家教网 > 高中数学 > 题目详情
17.设偶函数f(x)的定义域为[-4,0)∪(0,4],若当x∈(0,4]时,f(x)=log2x,
(1)求出函数在定义域[-4,0)∪(0,4]的解析式;
(2)求不等式xf(x)<0得解集.

分析 (1)根据f(x)是偶函数,f(-x)=f(x),当x∈(0,4]时,f(x)=log2x,可求x∈[-4,0)的解析式.
(2)根据定义域的不同,解析式不同,分类解不等式即可.

解答 解:(1)由题意知:f(x)是偶函数,即f(-x)=f(x),
当x∈(0,4]时,f(x)=log2x,
那么:当x∈[-4,0)时,则-x∈(0,4],
可得:f(-x)=log2-x,
∵f(-x)=f(x),
∴f(x)=log2-x,
故得f(x)的函数解析式为:$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x,(0<x≤4)}\\{lo{g}_{2}-x,(-4≤x<0)}\end{array}\right.$
(2)当0<x≤4时,f(x)=log2x,
∵0<x<1时,f(x)<0,
不等式xf(x)<0恒成立.
当-4≤x<0时,f(x)=log2-x,
∵-4≤x<-1时,f(x)>0,
不等式xf(x)<0恒成立.
综上所述:不等式的解集为(-4,-1)∪(0,1).

点评 本题考考查了分段函数的解析式的求法以及不等式的解集转化为恒成立来求解.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数为(  )
①若函数y=f(x)是定义在R上的增函数,且满足f(1)=0,f(a)+f(b)=f(a+b)-1,那么关于x的不等式f(x2-1)+f(1-x)>0的解集为{x|x<-1或x>2}
②若函数f(x)=(a2-a-2)x2+(a+1)x+2的定义域和值域都为R,则a=2;
③已知函数f(x)=x+a,g(x)=2x+1,若对任意的x1∈[-1,1]都存在x2∈[-1,1],使得f(x1)=g(x2),则0≤a≤2
④已知函数f(x)=x+a,g(x)=2x+1,若存在x1,x2∈[-1,1],使得f(x1)=g(x2),则-2≤a≤2.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知对任意实数x,不等式mx2-(3-m)x+1>0成立或不等式mx>0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知下列四个命题:
①函数f(x)=$\frac{1}{3}$x-lnx(x>0),则y=f(x)在区间($\frac{1}{e}$,1)内无零点,在区间(1,e)内有零点;
②函数f(x)=log2(x+$\sqrt{1+{x^2}}$),g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2;
④设x1、x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1,
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知映射f:(x,y)→(x-2y,2x+x),则(2,4)→(-6,6),(1,3)→(-5,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=|x+a|的图象关于y轴对称,则f(x)的单调减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{1}{x}$+lg(1-2x)定义域为{x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l:y=x+5$\sqrt{7}$,椭圆上任意点P,则点P到直线l的距离的最大值(  )
A.3$\sqrt{14}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x3+ax2-9x+3(a<0),且曲线y=f(x)斜率最小的切线与直线12x+y=6平行.试求:
(1)a的值;
(2)函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案