精英家教网 > 高中数学 > 题目详情
2.已知i是虚数单位,若z(1+i)=1+3i,则z=(  )
A.2+iB.2-iC.-1+iD.-1-i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:由z(1+i)=1+3i,得$z=\frac{1+3i}{1+i}=\frac{(1+3i)(1-i)}{(1+i)(1-i)}=\frac{4+2i}{2}=2+i$,
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点F1,F2,离心率$e=\frac{{\sqrt{2}}}{2}$,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,点A为椭圆上一动点(非长轴端点),AF2的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sin(540°+α)=-$\frac{4}{5}$,则cos(α-270°)=(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,${a_2}=4{,^{\;}}{a_5}=32$.
(1)求数列{an}的通项公式;
(2)若${a_3}{,^{\;}}{a_5}$分别为等差数列{bn}的第4项和第16项,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(0,-2),椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{3}}{2}$,F是椭圆E的右焦点,直线AF的斜率为$\frac{2\sqrt{3}}{3}$,O是坐标原点.
(1)求E的方程;
(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线2x-4y+7=0的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A、B、C是我方三个炮兵阵地,A在B正东6km,C在B正北偏西30°,相距4km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4s后,B、C才同时发现这一信号,此信号的传播速度为1km/s,A若炮击P地,则炮击的方位角是北(南、北)偏东(东、西)30度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在空间直角坐标系中,点P(3,2,5)关于yOz平面对称的点的坐标为(  )
A.(-3,2,5)B.(-3,-2,5)C.(3,-2,-5)D.(-3,2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.手表时针走过1小时,时针转过的角度(  )
A.60°B.-60°C.30°D.-30°

查看答案和解析>>

同步练习册答案