精英家教网 > 高中数学 > 题目详情

【题目】某公司生产某种产品进行出售,当这种产品定价为每吨1000元时,每月可售出产品100.当每吨价格每增加20元时,月售出量将会减少1吨.产品每吨生产成本400元,月固定成本为20000.

(Ⅰ)当产品每吨定价为1200元时,该公司月利润是多少?

(Ⅱ)当产品每吨定价为多少元时,该公司的月利润最大?最大月利润是多少?(利润=总收入-生产成本-固定成本)

【答案】(Ⅰ)月利润52000元;(Ⅱ)当元时,最大利润是64500

【解析】

(Ⅰ)当产品每吨定价为1200元时,产品可售出90吨,然后求出即可

(Ⅱ)设每吨定价为元(),月收益为元,,然后利用二次函数的知识求出答案即可

(Ⅰ)产品可售出吨,月利润(元)

(Ⅱ)设每吨定价为元(),月收益为.

元时的最大值即最大利润是64500

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】()(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.

(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.

(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:

计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钓鱼岛及其附属岛屿是中国固有领土,如图:点ABC分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且AB两点的距离约为3海里.

1)求AC两点间的距离;(精确到0.01

2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某超市一年中各月份的收入与支出单位:万元情况的条形统计图已知利润为收入与支出的差,即利润收入一支出,则下列说法正确的是  

A. 利润最高的月份是2月份,且2月份的利润为40万元

B. 利润最低的月份是5月份,且5月份的利润为10万元

C. 收入最少的月份的利润也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆过点A(2,1),离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆相交于BC两点(异于点A),线段BCy轴平分,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次摸取奖票的活动中,已知中奖的概率为,若票仓中有足够多的票则下列说法正确的是  

A. 若只摸取一张票,则中奖的概率为

B. 若只摸取一张票,则中奖的概率为

C. 100个人按先后顺序每人摸取1张票则一定有2人中奖

D. 100个人按先后顺序每人摸取1张票,则第一个摸票的人中奖概率最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列的前五项和,且成等比数列.

1)求数列的通项公式;

2)若为数列的前项和,且存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别为的中点.

1)证明:平面

2)已知与平面所成的角为30°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的单调区间;

(2)求函数的极值.

查看答案和解析>>

同步练习册答案