精英家教网 > 高中数学 > 题目详情
19.解方程$\root{3}{2+x}$=1-$\sqrt{x+1}$.

分析 设$\root{3}{2+x}$=t,则x=t3-2,原方程可化为(t-1)(t2+2)=0,解得即可.

解答 解:设$\root{3}{2+x}$=t,则x=t3-2,
因此原方程变为t=1-$\sqrt{{t}^{3}-1}$,
整理得t3-1=(1-t)2
即(t-1)(t2+2)=0,
解得t=1,
∴x=1-2=-1.

点评 本题考查了根式方程的解法,关键是换元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=asinωx+bcosωx+1(ω>1,a>0,b>0)的周期为π,$f({\frac{π}{4}})=\sqrt{3}+1$,且f(x)的最大值为3.
(1)求f(x)的表达式;
(2)求f(x)的对称中心和对称轴;
(3)说明f(x)的图象由y=2sinx的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌x与身高y进行测量,得到数据(单位:cm)作为一个样本如下表示:
脚掌长(  )20212223242526272829
身高(  )141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}•\overrightarrow{AB}≥\overrightarrow{PA}•\overrightarrow{PB}$,则λ的最小值是(  )
A.1B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在[a-1,2a]上的偶函数,则a=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l:x-$\sqrt{3}$y+2=0与圆x2+y2=4交于A,B两点,则$\overrightarrow{AB}$在x轴正方向上投影的绝对值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.($\frac{1}{2}$)a>($\frac{1}{2}$)bD.a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且当x∈[0,2]时函数f(x)单调递减,给出下列四个命题中正确的是①②④.
①f(2)=0;
②x=-4为函数f(x)的一条对称轴;
③函数f(x)在[8,10]上单调递增;
④若方程f(x)=m在区间[-6,-2]上的两根为x1,x2,则x1+x2=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.点P是曲线y=x2上任意一点,则点P到直线y=2x-2的最小距离为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案