精英家教网 > 高中数学 > 题目详情
8.已知抛物线x2=4y的焦点为F,准线为l,抛物线的对称轴与准线交于点Q,P为抛物线上的动点,|PF|=m|PQ|,当m最小时,点P恰好在以F,Q为焦点的椭圆上,则椭圆的离心率为(  )
A.$3-2\sqrt{2}$B.$2-\sqrt{2}$C.$\sqrt{3}-\sqrt{2}$D.$\sqrt{2}-1$

分析 求出F(0,1),Q(0,-1),过点P作PM垂直于准线,则PM=PF.记∠PQM=α,则m=$\frac{|PF|}{|PQ|}=\frac{|PM|}{|PQ|}=sinα$,当α最小时,m有最小值,设P(${x}_{1},\frac{{{x}_{1}}^{2}}{4}$),然后求解a,c,即可求解椭圆的离心率、

解答 解:由已知,F(0,1),Q(0,-1),过点P作PM垂直于准线,则PM=PF.记∠PQM=α,
则m=$\frac{|PF|}{|PQ|}=\frac{|PM|}{|PQ|}=sinα$,
当α最小时,m有最小值,此时直线PQ与抛物线相切于
点P
设P(${x}_{1},\frac{{{x}_{1}}^{2}}{4}$),可得P(±2,1),所以|PQ|=2$\sqrt{2}$,|PF|=2,则|PF|+|PQ|=2a,
∴a=$\sqrt{2}+1$,c=1,
∴e=$\frac{c}{a}$=$\sqrt{2}-1$,
故选:D.

点评 本题考查直线与抛物线的位置关系,椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=-{log_2}({{x^2}-2ax+3})在(-∞,1)$上是增函数,则a的取值范围[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于直线m,n和平面α,β,有以下四个命题:
①若m∥α,n∥β,α∥β,则m∥n;    
②若m∥n,m?α,n⊥β,则α⊥β;
③若α∩β=m,m∥n,则n∥α且n∥β;
④若m⊥n,α∩β=m,则n⊥α或n⊥β.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若平面向量$\overrightarrow a=(-1,2)$,$|{\overrightarrow b}|=3\sqrt{5}$,设$\overrightarrow a$与$\overrightarrow b$的夹角为θ,且cosθ=-1,则$\overrightarrow b$的坐标为(3,-6).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2ax-asinx+cosx在(-∞,+∞)内单调递减,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{3}}{3}$)B.(-∞,$\frac{\sqrt{3}}{3}$]C.(-∞,-$\frac{\sqrt{3}}{3}$)D.(-∞,-$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设O是坐标原点,AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,KAB,KOM分别表示直线AB,OM的斜率,在圆x2+y2=r2中,KAB•KOM=-1,在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,类比上述结论可得若AB是圆锥曲线的一条不经过点O且不垂直于坐标轴的弦,M是弦AB的中点,则${K_{AB}}•{K_{OM}}=-\frac{b^2}{a^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若方程lg2x•lg3x+a2=0有两个不相等的实数根,求实数a的取值范围.并求方程的两个根之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将函数f(x)=sin2x+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位后,所得到的图象关于y轴对称,则φ的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=4-t}\end{array}\right.$(t为参数),在以O为极点x轴的非负半轴为极轴建立的极坐标系中,曲线C的极坐标方程为ρ=2.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若点Q是曲线C上的动点,求点Q到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案