精英家教网 > 高中数学 > 题目详情
17.将函数f(x)=sin2x+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位后,所得到的图象关于y轴对称,则φ的最小值为$\frac{π}{12}$.

分析 由两角和的正弦化简y=$\sqrt{3}$cos2x+sin2x,平移后由函数为偶函数得到2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,由此可求最小正数φ的值.

解答 解:∵y=$\sqrt{3}$cos2x+sin2x=2($\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x)=2sin(2x+$\frac{π}{3}$),
∴将函数y=$\sqrt{3}$cos2x+sin2x(x∈R)的图象向左平移φ(φ>0)个长度单位后,
所得到的图象对应的函数解析式为y=2sin(2x+2φ+$\frac{π}{3}$).
∵所得到的图象关于y轴对称,
∴y=2sin(2x+2φ+$\frac{π}{3}$)为偶函数.
即2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
当k=0时,φ的最小值为$\frac{π}{12}$.
故答案为:$\frac{π}{12}$.

点评 本题考查了y=Asin(ωx+φ)型函数的图象平移,考查了三角函数奇偶性的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cos($\frac{π}{3}$-ωx)cosωx-1(ω>0)图象的相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线x2=4y的焦点为F,准线为l,抛物线的对称轴与准线交于点Q,P为抛物线上的动点,|PF|=m|PQ|,当m最小时,点P恰好在以F,Q为焦点的椭圆上,则椭圆的离心率为(  )
A.$3-2\sqrt{2}$B.$2-\sqrt{2}$C.$\sqrt{3}-\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x的方程x2-xlnx+2=k(x+2)在[$\frac{1}{2}$,+∞)上有两解,则实数k的取值范围为(  )
A.(1,$\frac{9}{10}$+$\frac{ln2}{5}$]B.(1,+∞)C.(1,$\frac{9}{10}$+$\frac{ln2}{5}$)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2-4x(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若A(x1,y1),B(x2,y2)(x2>x1>0)是曲线y=f(x)上的两点,x0=$\frac{{x}_{1}+{x}_{2}}{2}$,问:是否存在a,使得直线AB的斜率等于f′(x0)?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若0<x1<x2<1,则(  )
A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1
C.x2ex1>x1ex2D.x2ex1<x1ex2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1与抛物线y2=2px(p>0)交于A、B两点,|AB|=2,则p=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复平面内,复数z=$\frac{2i}{1+i}$(i为虚数单位)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设M、N是直线x+y-2=0上的两动点,且|MN|=$\sqrt{2}$,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值为(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案