分析 由两角和的正弦化简y=$\sqrt{3}$cos2x+sin2x,平移后由函数为偶函数得到2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,由此可求最小正数φ的值.
解答 解:∵y=$\sqrt{3}$cos2x+sin2x=2($\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$sin2x)=2sin(2x+$\frac{π}{3}$),
∴将函数y=$\sqrt{3}$cos2x+sin2x(x∈R)的图象向左平移φ(φ>0)个长度单位后,
所得到的图象对应的函数解析式为y=2sin(2x+2φ+$\frac{π}{3}$).
∵所得到的图象关于y轴对称,
∴y=2sin(2x+2φ+$\frac{π}{3}$)为偶函数.
即2φ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
当k=0时,φ的最小值为$\frac{π}{12}$.
故答案为:$\frac{π}{12}$.
点评 本题考查了y=Asin(ωx+φ)型函数的图象平移,考查了三角函数奇偶性的性质,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3-2\sqrt{2}$ | B. | $2-\sqrt{2}$ | C. | $\sqrt{3}-\sqrt{2}$ | D. | $\sqrt{2}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$] | B. | (1,+∞) | C. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ex2-ex1>lnx2-lnx1 | B. | ex2-ex1<lnx2-lnx1 | ||
| C. | x2ex1>x1ex2 | D. | x2ex1<x1ex2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com