精英家教网 > 高中数学 > 题目详情
7.设M、N是直线x+y-2=0上的两动点,且|MN|=$\sqrt{2}$,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值为(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

分析 设M(m,2-m),N(n,2-n),且m>n,运用两点的距离公式可得m-n=1,再由向量的数量积的坐标表示,转化为n的二次函数,配方即可得到所求最小值.

解答 解:设M(m,2-m),N(n,2-n),且m>n,
由|MN|=$\sqrt{2}$,可得$\sqrt{(m-n)^{2}+(m-n)^{2}}$=$\sqrt{2}$,
可得m-n=1,即m=1+n,
则$\overrightarrow{OM}$•$\overrightarrow{ON}$=mn+(2-m)(2-n)=2mn+4-2(m+n)=2n(1+n)+4-2(1+2n)
=2(n2-n+1)=2[(n-$\frac{1}{2}$)2+$\frac{3}{4}$]≥$\frac{3}{2}$,
当n=$\frac{1}{2}$,m=$\frac{3}{2}$时,可得$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值为$\frac{3}{2}$,
故选:D.

点评 本题考查向量数量积的坐标表示,注意运用转化思想,运用二次函数的最值求法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.将函数f(x)=sin2x+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位后,所得到的图象关于y轴对称,则φ的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=4-t}\end{array}\right.$(t为参数),在以O为极点x轴的非负半轴为极轴建立的极坐标系中,曲线C的极坐标方程为ρ=2.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若点Q是曲线C上的动点,求点Q到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥A-BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.
(1)若F是AD的中点,求证:EF∥平面ABC;
(2)M、N是棱BC的两个三等分点,求证:EM⊥平面ADN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列选项中,说法正确的是(  )
A.命题“?x0∈R,x02-x0≤0”的否定为“?x∈R,x2-x>0”
B.命题“在△ABC中,A>30°,则sinA>$\frac{1}{2}$”的逆否命题为真命题
C.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件
D.若非零向量$\overrightarrow a$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|+|{\overrightarrow b}$|,则$\overrightarrow a$与$\overrightarrow b$共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对边分别是a,b,c,若sin(A-B)=$\frac{a}{a+b}$sinAcosB-$\frac{b}{a+b}$sinBcosA.
(1)求证:A=B;
(2)若A=$\frac{7π}{24}$,a=$\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设复数z1,z2在复平面内的对应点关于虚轴对称,若z1=1-2i,其中i是虚数单位,则$\frac{{z}_{2}}{{z}_{1}}$的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数集R,集合$M=\left\{{x|{{log}_3}x<3}\right\},N=\left\{{x|{x^2}-4x-5>0}\right\}$,则M∩(∁RN)=(  )
A.[-1,8)B.(0,5]C.[-1,5)D.(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.100张卡片上分别写有1,2,3,…,100,从中任取1张,则这张卡片上的数是6的倍数的概率是$\frac{4}{25}$.

查看答案和解析>>

同步练习册答案