精英家教网 > 高中数学 > 题目详情
19.设复数z1,z2在复平面内的对应点关于虚轴对称,若z1=1-2i,其中i是虚数单位,则$\frac{{z}_{2}}{{z}_{1}}$的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{4}{5}$iD.$\frac{4}{5}$i

分析 利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.

解答 解:复数z1,z2在复平面内的对应点关于虚轴对称,z1=1-2i,∴z2=-1-2i.
则$\frac{{z}_{2}}{{z}_{1}}$=$\frac{-1-2i}{1-2i}$=-$\frac{(1+2i)^{2}}{(1-2i)(1+2i)}$=-$\frac{-3+4i}{5}$=$\frac{3}{5}$-$\frac{4}{5}$i.
其虚部为-$\frac{4}{5}$.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1与抛物线y2=2px(p>0)交于A、B两点,|AB|=2,则p=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,则z=3x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设M、N是直线x+y-2=0上的两动点,且|MN|=$\sqrt{2}$,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值为(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{e}^{x}}{m{x}^{2}+nx+k}$,其中m,n,k∈R.
(1)若m=n=k=1,求f(x)的单调区间;
(2)若n=k=1,且当x≥0时,f(x)≥1总成立,求实数m的取值范围;
(3)若m>0,n=0,k=1,若f(x)存在两个极值点x1、x2,求证:$\frac{e\sqrt{m}}{m}$<f(x1)+f(x2)<$\frac{{e}^{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,那么就称数列{an}具有相纸P,已知数列{an}具有性质P,且a1=1,a2=2,a3=3,a5=2,a6+a7+a8=21,则a2017=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b分别为9,15,则输出的a=(  )
A.1B.2C.3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(1)证明:A1C∥平面BC1D;
(2)若A1A=A1C,点A1在平面ABC的射影在AC上,且BC与平面BC1D所成角的正弦值为$\frac{{\sqrt{15}}}{5}$,求三棱柱ABC-A1B1C1的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中哪个与函数y=-x相等(  )
A.$y=-\sqrt{x^2}$B.$y=\frac{-x(x-1)}{x-1}$
C.y=-logaax(a>0且a≠1)D.$y=-\sqrt{x}•\sqrt{x}$

查看答案和解析>>

同步练习册答案