精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A,B,C所对边分别是a,b,c,若sin(A-B)=$\frac{a}{a+b}$sinAcosB-$\frac{b}{a+b}$sinBcosA.
(1)求证:A=B;
(2)若A=$\frac{7π}{24}$,a=$\sqrt{6}$,求△ABC的面积.

分析 (1)sin(A-B)=$\frac{a}{a+b}$sinAcosB-$\frac{b}{a+b}$sinBcosA,展开利用正弦定理可得:acosB-bcosA=$\frac{{a}^{2}}{a+b}$cosB-$\frac{{b}^{2}}{a+b}$cosA,化简即可证明.
(2)A=B,可得b=a=$\sqrt{6}$.c=2bcosA,可得S△ABC=$\frac{1}{2}$bcsinA=3sin$\frac{7π}{12}$=3sin$(\frac{π}{4}+\frac{π}{3})$,展开即可得出.

解答 (1)证明:∵sin(A-B)=$\frac{a}{a+b}$sinAcosB-$\frac{b}{a+b}$sinBcosA,
∴sinAcosB-cosAsinB=$\frac{a}{a+b}$sinAcosB-$\frac{b}{a+b}$sinBcosA,
利用正弦定理可得:acosB-bcosA=$\frac{{a}^{2}}{a+b}$cosB-$\frac{{b}^{2}}{a+b}$cosA,
化为:cosA=cosB,又A,B∈(0,π),
∴A=B.
(2)解:∵A=B,∴b=a=$\sqrt{6}$.
∴c=2bcosA=2$\sqrt{6}$cos$\frac{7π}{24}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{6}$×2$\sqrt{6}$cos$\frac{7π}{24}$×sin$\frac{7π}{24}$
=3sin$\frac{7π}{12}$=3sin$(\frac{π}{4}+\frac{π}{3})$=3$(\frac{\sqrt{2}}{2}×\frac{1}{2}+\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2})$=$\frac{3(\sqrt{2}+\sqrt{6})}{4}$.

点评 本题考查了正弦定理、倍角公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若0<x1<x2<1,则(  )
A.ex2-ex1>lnx2-lnx1B.ex2-ex1<lnx2-lnx1
C.x2ex1>x1ex2D.x2ex1<x1ex2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=-x2-6x-3,g(x)=2x3+3x2-12x+9,m<-2,若?x1∈[m,-2),?x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为(  )
A.-5B.-4C.-2$\sqrt{5}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈A∪B“是“x∈C“的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设M、N是直线x+y-2=0上的两动点,且|MN|=$\sqrt{2}$,则$\overrightarrow{OM}$•$\overrightarrow{ON}$的最小值为(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,点F1、F2是椭圆C1、C2的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率分别为e1、e2,则(  )
A.e22=$\frac{1+{{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$B.e22=$\frac{{2{e}_{1}}^{4}}{1-{{e}_{1}}^{2}}$
C.e22=$\frac{1-{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$D.e22=$\frac{{{e}_{1}}^{4}}{2{{e}_{1}}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,那么就称数列{an}具有相纸P,已知数列{an}具有性质P,且a1=1,a2=2,a3=3,a5=2,a6+a7+a8=21,则a2017=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与直线y=x+3只有一个公共点,且椭圆的离心率为$\frac{{\sqrt{5}}}{5}$,则椭圆C的方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{5}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{25}+\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在平面四边形ABCD中,O为BD的中点,且OA=3,OC=5,若$\overrightarrow{AB}$•$\overline{AD}$=-7,则$\overrightarrow{BC}$•$\overrightarrow{DC}$的值是9.

查看答案和解析>>

同步练习册答案