分析 (1)取BD的中点G,连接EG,FG,证明平面EFG∥平面ABC,即可证明:EF∥平面ABC;
(2)M、N是棱BC的两个三等分点,证明EM⊥ND,AD⊥EM,即可证明:EM⊥平面ADN.
解答
证明:(1)取BD的中点G,连接EG,FG,
∵F是AD的中点,
∴FG∥AB,
∵BD=2CE,∴BG=CE,
∵∠DBC=∠BCE,
∴E,G到直线BC的距离相等,则EG∥CB,
∵EG∩FG=G,
∴平面EFG∥平面ABC,
∵EF?平面EFG,
∴EF∥平面ABC;
(2)∵BD⊥DE,∠DBC=∠BCE═60°,BD=2CE,
∴BC=3CE,
∵M、N是棱BC的两个三等分点,
∴MN=CE,BD=BN,
∵∠DBC=60°,
∴△BDN是正三角形,即∠BND=60°,
∵∠BCE=60°,∴CE∥ND,
△CEM中,CM=2CE,∠BCE=60°,
∴∠CEM=90°,
∴EM⊥CE,EM⊥ND,
∵AD⊥平面BCED,
∴AD⊥EM,
∵AD∩ND=D,
∴EM⊥平面ADN.
点评 本题考查面面平行、线面平行的判定,考查线面垂直的判定,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$] | B. | (1,+∞) | C. | (1,$\frac{9}{10}$+$\frac{ln2}{5}$) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -4 | C. | -2$\sqrt{5}$ | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com