精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数,,设
(Ⅰ)求函数的单调区间;
(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;
(Ⅲ)是否存在实数m,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由。

(1) 的单调递减区间为,单调递增区间为
(2)
(3) 当时,的图象与的图象恰有四个不同的交点

解析试题分析:解:(I)
,由,∴上单调递增。
,∴上单调递减。
的单调递减区间为,单调递增区间为
(II)
恒成立
时,取得最大值
,∴
(III)若的图象与的图象恰有四个不同得交点,即有四个不同的根,亦即有四个不同的根。


当x变化时,的变化情况如下表:

x




的符号




的单调性




由表格知:
画出草图和验证可知,当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,求曲线在点处的切线方程;
(II)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知a为实数,
(1)求导数
(2)若,求在[-2,2] 上的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数是实数集R上的奇函数,且在R上为增函数。
(Ⅰ)求的值;
(Ⅱ)求恒成立时的实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知曲线f (x ) =" a" x 2 +2在x=1处的切线与2x-y+1=0平行
(1)求f (x )的解析式 
(2)求由曲线y="f" (x ) 与所围成的平面图形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数(为自然对数的底数),).
(1)证明:
(2)当时,比较的大小,并说明理由;
(3)证明:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数的单调区间和极值点;
(Ⅱ)若函数有极值点,记过点与原点的直线斜率为。是否存在使?若存在,求出值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案