精英家教网 > 高中数学 > 题目详情
1.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O为坐标原点.
(1)若x=$\frac{3}{4}$π,设点D为线段OA上的动点,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈[0,$\frac{π}{2}$],向量$\overrightarrow{m}$=$\overrightarrow{BC}$,$\overrightarrow{n}$=(1-cosx,sinx-2cosx),求$\overrightarrow{m}•\overrightarrow{n}$的取值范围.

分析 (1)设D(t,0)(0≤t≤1),根据向量的数量积的运算化简得到|$\overrightarrow{OC}$+$\overrightarrow{OD}$|2=(t-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,(0≤t≤1),利用二次函数的性质求得它的最小值.
(2)根据向量的数量积的运算化简得到$\overrightarrow{m}•\overrightarrow{n}$=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,再利用正弦函数的定义域和值域 求出它的最值

解答 解:(1)设D(t,0)(0≤t≤1),又点C(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
∴$\overrightarrow{OC}$+$\overrightarrow{OD}$=(-$\frac{\sqrt{2}}{2}$+t,$\frac{\sqrt{2}}{2}$),
∴|$\overrightarrow{OC}$+$\overrightarrow{OD}$|2=t2-$\sqrt{2}$t+1=(t-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,(0≤t≤1),
∴当t=$\frac{\sqrt{2}}{2}$时,|$\overrightarrow{OC}$+$\overrightarrow{OD}$|取得最小值为$\frac{\sqrt{2}}{2}$;
(2)由题意得:点由题意得C(cosx,sinx),
$\overrightarrow{m}$=$\overrightarrow{BC}$=(cosx+1,sinx),$\overrightarrow{n}$=(1-cosx,sinx-2cosx),
∴$\overrightarrow{m}•\overrightarrow{n}$=(cosx+1)(1-cosx)+sinx(sinx-2cosx)
=1-cos2x+sin2x-2sinxcosx=1-cos2x-sin2x=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1
∵x∈[0,$\frac{π}{2}$],
∴$\frac{π}{4}$≤2x+$\frac{π}{4}$≤$\frac{5π}{4}$,
∴-$\frac{\sqrt{2}}{2}$≤sin(2x+$\frac{π}{4}$)≤1,
∴1-$\sqrt{2}$≤-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1≤2,
∴$\overrightarrow{m}•\overrightarrow{n}$的取值范围为[1-$\sqrt{2}$,2]

点评 本题主要考查三角函数的恒等变换及化简求值,两个向量的数量积的公式,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数y=f(x)(x∈R)的导函数为y=f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:a=ef(2),b=f(3),c=e2f(-1)从小到大排列为b<a<c.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则an=$\frac{{3{n^2}-n}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.观察下列的规律:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…则第89个是(  )
A.$\frac{1}{8}$B.$\frac{2}{13}$C.$\frac{11}{3}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sinxcosx+$\sqrt{3}{sin^2}$x-$\frac{{\sqrt{3}}}{2}$.
(1)当x∈[${\frac{π}{12}$,$\frac{7π}{12}}$]时,求函数f(x)的值域;
(2)求函数f(x)的单调递增区间和其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,且AB=AC=2,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)若三棱锥D-MAC的体积为$\frac{\sqrt{3}}{6}$,求平面MAC与平面PAB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=emx-lnx-2.
(1)若m=1,证明:存在唯一实数t∈($\frac{1}{2}$,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:填空题

函数的值域是 .

查看答案和解析>>

同步练习册答案