精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=sinxcosx+$\sqrt{3}{sin^2}$x-$\frac{{\sqrt{3}}}{2}$.
(1)当x∈[${\frac{π}{12}$,$\frac{7π}{12}}$]时,求函数f(x)的值域;
(2)求函数f(x)的单调递增区间和其图象的对称中心.

分析 (1)利用三角恒等变换化简函数的解析式,利用求得正弦函数的定义域和值域函数f(x)的值域.
(2)利用正弦函数的单调性,正弦函数的图象的对称性,求得函数f(x)的单调递增区间和其图象的对称中心.

解答 解:(1)$f(x)=\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x=sin(2x-\frac{π}{3})$,∵x∈[${\frac{π}{12}$,$\frac{7π}{12}}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴$f(x)∈[{-\frac{1}{2},1}]$.
(2)由题知,使f(x)单调递增,
则须$2x-\frac{π}{3}∈[{-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ}],k∈Z,解得x∈[{-\frac{π}{12}+kπ,\frac{5π}{12}+kπ}],k∈Z$,
∴函数f(x)的单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
令2x-$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,故函数的图象的对称中心为($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z.

点评 本题主要考查三角恒等变换,正弦函数的定义域和值域,正弦函数的单调性,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期及对称中心;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设m个正数a1,a2,…,am(m≥4,m∈N*)依次围成一个圆圈.其中a1,a2,a3,…ak-1,ak(k<m,k∈N*)是公差为d的等差数列,而a1,am,am-1,…,ak+1,ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1,a2,…,am的所有项的和Sm
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设F为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左焦点,A,B,C为椭圆上的三点,若$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,则|$\overrightarrow{FA}$|+|$\overrightarrow{FB}$|+|$\overrightarrow{FC}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度v(t)=6-t+$\frac{44}{1+t}$(t的单位:s,v的单位:m/s)紧急刹车至停止.则紧急刹车后火车运行的路程是10+44ln11(m)(不作近似计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O为坐标原点.
(1)若x=$\frac{3}{4}$π,设点D为线段OA上的动点,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈[0,$\frac{π}{2}$],向量$\overrightarrow{m}$=$\overrightarrow{BC}$,$\overrightarrow{n}$=(1-cosx,sinx-2cosx),求$\overrightarrow{m}•\overrightarrow{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱台ABO-A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1,OB=3,O1B1=1,OO1=$\sqrt{3}$.
(1)证明:AB1⊥BO1
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O-AB1-O1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1,x2,证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题

已知函数.

(1)若,求函数处切线方程;

(2)讨论函数的单调区间.

查看答案和解析>>

同步练习册答案