精英家教网 > 高中数学 > 题目详情
16.把函数y=sin(6x+$\frac{π}{6}$)图象上各点的横坐标扩大到原来的3倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得函数图象的一条对称轴方程为(  )
A.x=-$\frac{π}{2}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=$\frac{π}{4}$

分析 由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,得出结论.

解答 解:把函数y=sin(6x+$\frac{π}{6}$)图象上各点的横坐标扩大到原来的3倍(纵坐标不变),
可得y=sin(2x+$\frac{π}{6}$)的图象;
再将图象向右平移$\frac{π}{3}$个单位,可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{6}$]=sin(2x-$\frac{π}{2}$)=-cos2x的图象,
令2x=kπ,求得x=$\frac{kπ}{2}$,k∈Z,
那么所得函数图象的一条对称轴方程为x=-$\frac{π}{2}$,
故选:A.

点评 本题主要考查诱导公式,y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,求使$\overrightarrow{a}$+k$\overrightarrow{b}$与k$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为锐角的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(x+$\frac{π}{6}$)-$\sqrt{3}$sin($\frac{π}{3}$-x)(x∈R)的最大值为(  )
A.1+$\sqrt{3}$B.2C.1D.-1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x|x-a|+|x+b|(a,b∈R).
(1)若a=2,b=1,试求函数f(x)在[0,2]上的值域;
(2)若b=0,1<a<2,试求函数f(x)在[-1,3]上的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b是实数,函数f(x)=x|x-a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[-3,0],使得函数f(x)在[-4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈R|1≤x≤5},B={x∈R|x<2},则A∩B为(  )
A.{x∈R|1≤x<2}B.{x∈R|x<1}C.{x∈R|2<x≤5}D.{x∈R|2≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-4<0},B={1,2,3},则A∩B=(  )
A.{1,2,3}B.{1,2}C.{1}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β$∈(\frac{3π}{4},π)$,$cos(α+β)=\frac{4}{5}$,$cos(β-\frac{π}{4})=-\frac{5}{13}$,则$sin(α+\frac{π}{4})$=$-\frac{33}{65}$.

查看答案和解析>>

同步练习册答案