精英家教网 > 高中数学 > 题目详情
7.梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=-12.

分析 以AD所在直线为x轴,BC所在直线为y轴,建立直角坐标系,由平行线的性质定理可得OD=1,运用勾股定理进而得到OC,OD,求得A,B,C,D的坐标,由向量的数量积的坐标表示,计算即可得到.

解答 解:以AD所在直线为x轴,BC所在直线为y轴,建立直角坐标系,
由AB∥CD可得,$\frac{OD}{OA}$=$\frac{CD}{BA}$,
即为$\frac{OD}{OD+2}$=$\frac{2}{6}$,解得OD=1,
可得OC=$\sqrt{4-1}$=$\sqrt{3}$,OB=$\sqrt{36-9}$=3$\sqrt{3}$,
即有A(3,0),D(1,0),B(0,3$\sqrt{3}$),C(0,$\sqrt{3}$),
则$\overrightarrow{AC}$•$\overrightarrow{BD}$=(-3,$\sqrt{3}$)•(1,-3$\sqrt{3}$)=-3•1+$\sqrt{3}$•(-3$\sqrt{3}$)=-12.
故答案为:-12.

点评 本题考查向量的数量积的求法,注意运用坐标法,同时考查向量的数量积的坐标表示,以及平行线的性质定理,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列直线与圆(x-1)2+(y+2)2=5相切的是(  )
A.2x-y+1=0B.2x-y-1=0C.2x+y+1=0D.2x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x∈(0,π),sinx+cosx=$\frac{1}{5}$.求:
(1)sin2x;
(2)tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E为B1C1的中点,F在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)证明:DG∥平面A1EF;
(2)设平面A1EF与DD1交于点H,求线段DH的长,并求出截面A1EFH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知定义在R上的连续函数f(x)满足f(0)=f(1).
(1)若f(x)=ax2+x,解不等式$\left|{f(x)}\right|<ax+\frac{3}{4}$;
(2)若任意x1,x2∈[0,1]且x1≠x2时,有|f(x1)-f(x2)|<|x1-x2|,求证:$\left|{f({x_1})-f({x_2})}\right|<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的可导函数f(x)的导函数为f′(x),已知函数y=2f′(x)的图象如图所示,则函数y=f(x)的单调递减区间为(  )
A.(1,+∞)B.(1,2)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义min{a,b}=$\left\{\begin{array}{l}{x,(x<y)}\\{y,(x≥y)}\end{array}\right.$,则不等式min{x+$\frac{4}{x}$,4}≥8min{x,$\frac{1}{x}$}的解集是$(-∞,0)∪(0,\frac{1}{2}]∪[2,∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把函数y=sin(6x+$\frac{π}{6}$)图象上各点的横坐标扩大到原来的3倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得函数图象的一条对称轴方程为(  )
A.x=-$\frac{π}{2}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x(x+2),若数列{an}满足a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,则f(a2016)=(  )
A.6B.-6C.-2D.2

查看答案和解析>>

同步练习册答案