精英家教网 > 高中数学 > 题目详情
12.定义在R上的可导函数f(x)的导函数为f′(x),已知函数y=2f′(x)的图象如图所示,则函数y=f(x)的单调递减区间为(  )
A.(1,+∞)B.(1,2)C.(-∞,2)D.(2,+∞)

分析 结合图象及指数函数的性质可判断f′(x)的正负,从而确定函数的单调性.

解答 解:结合图象可知,
当x∈(-∞,2]时,2f′(x)≥1,即f′(x)≥0;
当x∈(2,+∞)时,2f′(x)<1,即f′(x)<0;
故函数y=f(x)的单调递减区间为(2,+∞),
故选D.

点评 本题考查了数形结合的思想方法应用及导数的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知α、β∈(0,π),tanα=$\frac{4}{3}$.
(1)求$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值;
(2)若sin(α+β)=$\frac{5}{13}$,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x+c)2+y2=4a2,点A(c,0),其中c>a>0,M是圆C上的动点,MA的中垂线交MC所在直线于P,则点P的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线中心在原点,顶点在y轴上,两顶点间的距离是16,且离心率为$\frac{5}{4}$,试求双曲线方程及焦点到渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,则$\overrightarrow{AC}$•$\overrightarrow{BD}$=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{a}{x}$+$\frac{b}{{x}^{2}}$,其中a,b∈R,ab≠0.
(1)若a=-2,b=1,求不等式|f(x)|<1的解集;
(2)若m是|a|、|b|、1中最大的一个,当|x|>m时,求证:|f(x)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=sin(x+$\frac{π}{6}$)-$\sqrt{3}$sin($\frac{π}{3}$-x)(x∈R)的最大值为(  )
A.1+$\sqrt{3}$B.2C.1D.-1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b是实数,函数f(x)=x|x-a|+b.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[1,2]上的最大值;
(3)若存在a∈[-3,0],使得函数f(x)在[-4,5]上恒有三个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=sin(2x+φ)$(|φ|<\frac{π}{2})$的图象向右平移$\frac{π}{12}$个单位后的图象关于y轴对称,则函数f(x)在$[0,\frac{π}{2}]$上的最小值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案