精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=.

1)若函数f(x)的图像中相邻两条对称轴间的距离不小于,求的取值范围;

2)若函数f(x)的最小正周期为π,且当x时,f(x)的最大值是,求函数f(x)的最小值,并说明如何由函数y=sin2x的图象变换得到函数y=f(x)的图象.

【答案】1;(2)最小值为的图象向右平移个单位即可得到的图象

【解析】

1)先利用二倍角公式将化为,由题意,,解不等式即可;

2)由最小正周期为可得,由x时,的最大值为可得,进一步可得的解析式及最小值,再由平移变换即可得到答案.

1

由题意,,即,解得.

2)因为函数f(x)的最小正周期为π,所以,所以

,当x时,

,所以,解得

所以.

因为,所以只需将的图象向右平移个单

位即可得到的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】同时抛掷两枚骰子,并记下二者向上的点数,求:

二者点数相同的概率;

两数之积为奇数的概率;

二者的数字之和不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]

在平面直角坐标系中,倾斜角为的直线的参数方程为

为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标

方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,平面平面 的中点.

(1)求证: 平面

(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:

产品
资源

甲产品
(每吨)

乙产品
(每吨)

资源限额
(每天)

煤(t

9

4

360

电力(kw·h

4

5

200

劳力(个)

3

10

300

利润(万元)

7

12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,抛物线 与抛物线 异于原点的交点为,且抛物线在点处的切线与轴交于点,抛物线在点处的切线与轴交于点,与轴交于点.

(1)若直线与抛物线交于点 ,且,求抛物线的方程;

(2)证明: 的面积与四边形的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在常数,使对一切实数均成立,则称为“倍约束函数”现给出下列函数:是定义在实数集上的奇函数,且对一切均有其中是“倍约束函数”的序号是  

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店

第一天售出但第二天未售出的商品有______种;

这三天售出的商品最少有_______.

查看答案和解析>>

同步练习册答案