精英家教网 > 高中数学 > 题目详情
8.设0<a<1,b>c>0,则下列结论不正确的是(  )
A.ab<acB.ba>caC.logab<logacD.$\frac{a}{b}>\frac{a}{c}$

分析 由0<a<1,b>c>0,利用指数函数、幂函数、对数函数的单调性及其不等式性质即可判断出正误.

解答 解:∵0<a<1,b>c>0,∴ab<ac,ba>ca,$lo{{g}_{a}}^{b}<lo{g}_{a}c$,$\frac{a}{b}<\frac{a}{c}$.
∴只有D错误.
故选:D

点评 本题考查了指数函数、幂函数、对数函数的单调性及其不等式性质、转化方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.
(Ⅰ)求证:△PAB为直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函数f(x)的单调区间;
(2)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD是正方形,四边形ABEG是平行四边形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,设线段CD、AE的中点分别为P、M.
(Ⅰ)求证:EF⊥平面BCE;
(Ⅱ)求证:MP∥平面BCE;
(Ⅲ)若∠EAF=30°,求三棱锥M-BDP和三棱锥F-BCE的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知射线OP:y=$\frac{4}{3}$x(x≥0)和矩形ABCD,AB=16,AD=9,点A、B分别在射线OP和x轴非负半轴上,则线段OD长度的最大值为(  )
A.$\sqrt{337}$B.27C.$\sqrt{689}$D.29

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延迟退休”的人数155152817
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下45岁以上总计
支持
不支持
总计
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知三个不同的平面α,β,γ满足α⊥γ,β⊥γ,则α与β的关系是相交或平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$sinα=\frac{3}{5}$,且角α的终边在第二象限,则tanα=(  )
A.30°B.$-\frac{3}{4}$C.$\frac{{10\sqrt{3}}}{3}$D.$5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义$\frac{n}{{P}_{1}+{P}_{2}+…+{P}_{n}}$为n个正数P1,P2…Pn的“均倒数”,若已知正整数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{10}{b}_{11}}$=(  )
A.$\frac{1}{11}$B.$\frac{1}{12}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

同步练习册答案