精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范围是(  )
A.$(\frac{2}{e},\frac{3}{4})$B.$[\frac{2}{e},\frac{3}{4})$C.$(\frac{2}{e},1)$D.$[\frac{2}{e},1)$

分析 设g(x)=ex(3x-1),h(x)=ax-a,对g(x)求导,将问题转化为存在唯一的整数x0使得g(x0)在直线h(x)=ax-a的下方,求导数可得函数的极值,解g(-1)-h(-1)=-4e-1+2a≥0,求得a的取值范围.

解答 解:设g(x)=ex(3x-1),h(x)=ax-a,
则g′(x)=ex(3x+2),
∴x∈(-∞,-$\frac{2}{3}$),g′(x)<0,g(x)单调递减,
x∈(-$\frac{2}{3}$,+∞),g′(x)>0,g(x)单调递增,
∴x=-$\frac{2}{3}$,取最小值-3e-$\frac{2}{3}$,
∴g(0)=-1<-a=h(0),
g(1)-h(1)=2e>0,
直线h(x)=ax-a恒过定点(1,0)且斜率为a,
∴g(-1)-h(-1)=-4e-1+2a>0,
∴a>$\frac{2}{e}$,
a<1,
∴a的取值范围($\frac{2}{e}$,1).
故选:C.

点评 本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,E,F分别是四面体OABC的边OA,BC的中点,M为EF的中点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则下列向量中与$\overrightarrow{OM}$相等的向量是(  )
A.-$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$D.-$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)当a=0时,求曲线y=f(x)在点P(1,1)处的切线方程;
(2)当a>0时,讨论函数f(x)的单调性;
(3)若关于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若正整数N除以正整数m后的余数为n,则记为N=n( mod m),例如10=2(mod 4).如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n等于(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex-x+$\frac{1}{2}{x^2}(e$为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R).
(Ⅰ)求f(x)的极值;
(Ⅱ)若f(x)≥g(x),求b(a+1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的导数,e为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某单位有500位职工,其中35岁以下的有125人,35~49岁的有280人,50岁以上的有95人,为了了解职工的健康状态,采用分层抽样的方法抽取一个容量为100的样本,需抽取35岁以下职工人数为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三位男同学两位女同学站成一排,女同学不站两端的排法总数为(  )
A.6B.36C.48D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱锥S-ABC中,△ABC为直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求证:AD⊥平面SBC.

查看答案和解析>>

同步练习册答案