精英家教网 > 高中数学 > 题目详情
17.三位男同学两位女同学站成一排,女同学不站两端的排法总数为(  )
A.6B.36C.48D.120

分析 根据题意,假设5个人分别对应5个空位,女同学不站两端,有3个位置可选;而其他3人对应其他3个位置,对其全排列,可得其排法数目,由分步计数原理计算可得答案.

解答 解:假设5个人分别对应5个空位,女同学不站两端,有3个位置可选;
则其他3人对应其他3个位置,有A33=6种情况,
则不同排列方法种数6×6=36种.
故选B.

点评 本题考查排列、组合的运用,一般要先处理特殊(受到限制的)元素.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,∠B=45°,△ABC的面积S=2
(1)求边b的长;
(2)求△ABC的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范围是(  )
A.$(\frac{2}{e},\frac{3}{4})$B.$[\frac{2}{e},\frac{3}{4})$C.$(\frac{2}{e},1)$D.$[\frac{2}{e},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.
(Ⅰ)求证:平面PBD⊥平面BFDE;
(Ⅱ)求四棱锥P-BFDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的方程为y=x+2,点P是抛物线y2=4x上到直线l距离最小的点,点A是抛物线上异于点P的点,直线AP与直线l交于点Q,过点Q与x轴平行的直线与抛物线y2=4x交于点B.
(Ⅰ)求点P的坐标;
(Ⅱ)证明直线AB恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在棱锥P-ABCD中,ABCD为矩形,PD⊥面ABCD,PB=2,PB与面PCD成45°角,PB与面ABD成30°角.
(1)在PB上是否存在一点E,使PC⊥面ADE,若存在确定E点位置,若不存在,请说明理由;
(2)当E为PB中点时,求二面角P-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线$x+\sqrt{3}y-1=0$的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有48种不同的选法(结果用数值表示).

查看答案和解析>>

同步练习册答案