分析 (1)求出函数f(x)的导数,求出f′(1),求出切线方程即可;
(2)求出函数f(x)的导数,通过讨论a的范围,求出函数的单调区间即可;
(3)问题转化为$\frac{{3x}^{2}+x-2}{{x}^{3}}$=a(x-lnx)在x∈[2,3]上有解,令g(x)=$\frac{{3x}^{2}+x-2}{{x}^{3}}$,x∈[2,3],令h(x)=a(x-lnx),x∈[2,3],根据函数的单调性得到关于a的不等式组,解出即可.
解答 解:(1)a=0时,f(x)=$\frac{2x-1}{{x}^{2}}$=$\frac{2}{x}$-$\frac{1}{{x}^{2}}$,
f′(x)=$\frac{2}{{x}^{3}}$-$\frac{2}{{x}^{2}}$=$\frac{2}{{x}^{2}}(\frac{1}{x}-1)$,
f′(1)=0,
故切线方程是:y-1=0(x-1),即y=1;
(2)f′(x)=$\frac{(x-1)({ax}^{2}-2)}{{x}^{3}}$,(a>0),
令f′(x)=0,解得:x=1或$\sqrt{\frac{2}{a}}$,
①$\sqrt{\frac{2}{a}}$<1即a>2时,
在(0,$\sqrt{\frac{2}{a}}$)上f′(x)>0,f(x)递增,
在($\sqrt{\frac{2}{a}}$,1)上,f′(x)<0,f(x)递减,
(1,+∞)上,f′(x)>0,f(x)递增,
②$\sqrt{\frac{2}{a}}$>1,即a∈(0,2)时,
在(0,1)上,f′(x)<0,f(x)递减,
在(1,$\sqrt{\frac{2}{a}}$)上,f′(x)>0,f(x)递增,
在($\sqrt{\frac{2}{a}}$,+∞)上,f′(x)<0,f(x)递减;
③a=2时,f′(x)≥0,f(x)递增;
(3)若关于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,
即$\frac{{3x}^{2}+x-2}{{x}^{3}}$=a(x-lnx)在x∈[2,3]上有解,
令g(x)=$\frac{{3x}^{2}+x-2}{{x}^{3}}$,x∈[2,3],
则g′(x)=$\frac{-{3x}^{2}-2x+6}{{x}^{4}}$<0在x∈[2,3]恒成立,
∴g(x)∈[$\frac{28}{27}$,$\frac{3}{2}$],
令h(x)=a(x-lnx),h′(x)=a(1-$\frac{1}{x}$)>0,
故h(x)在[2,3]递增,h(x)∈[a(2-ln2),a(3-ln3)],
∴只需$\left\{\begin{array}{l}{g(2)≥h(2)}\\{g(3)≤h(3)}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{3}{2}≥a(2-ln2)}\\{\frac{28}{27}≤a(3-ln3)}\end{array}\right.$,
解得:$\frac{28}{27(3-ln3)}$≤a≤$\frac{3}{2(2-ln2)}$.
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | y=log2x | B. | y=$\frac{1}{x^2}$ | C. | y=$\frac{1}{2^x}$ | D. | y=$\frac{1}{{\sqrt{x}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x-4 | B. | y=2x-3 | C. | y=-x-6 | D. | y=3x-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (11,8) | B. | (3,2) | C. | (-11,-6) | D. | (-3,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{2}{e},\frac{3}{4})$ | B. | $[\frac{2}{e},\frac{3}{4})$ | C. | $(\frac{2}{e},1)$ | D. | $[\frac{2}{e},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com