精英家教网 > 高中数学 > 题目详情
4.已知△ABC的顶点坐标分别为A(1,1),B(3,1),C(4,4).
(1)求$\overrightarrow{AB}$+$\overrightarrow{BC}$的坐标;
(2)求角A的值.

分析 (1)利用向量坐标运算性质即可得出.
(2)利用向量夹角公式、数量积运算性质即可得出.

解答 解:(1)$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$=(4,4)-(1,1)=(3,3).
(2)$\overrightarrow{AB}$=(2,0),$\overrightarrow{AC}$=(3,3).
∴$\overrightarrow{AB}•\overrightarrow{AC}$=6,
$cos<\overrightarrow{AB},\overrightarrow{AC}>$=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{6}{2×3\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
可得∠BAC=$\frac{π}{4}$.

点评 本题考查了向量坐标运算性质、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数f(x)=|${log_{\frac{1}{2}}}$x|的单调递增区间是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线C的右焦点为F,过F的直线l与双曲线C交于不同两点A、B,且A、B两点间的距离恰好等于焦距,若这样的直线l有且仅有两条,则双曲线C的离心率的取值范围为(1,$\frac{1+\sqrt{17}}{4}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=a(x-lnx)+$\frac{2x-1}{{x}^{2}}$.
(1)当a=0时,求曲线y=f(x)在点P(1,1)处的切线方程;
(2)当a>0时,讨论函数f(x)的单调性;
(3)若关于x的方程f(x)=$\frac{5}{x}$-$\frac{2}{{x}^{3}}$在x∈[2,3]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间[-1,3]内任取一个实数x满足log2(x-1)>0的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若正整数N除以正整数m后的余数为n,则记为N=n( mod m),例如10=2(mod 4).如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n等于(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的导数,e为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我校教育处连续30天对同学们的着装进行检查,着装不合格的人数为如图所示的茎叶图,则中位数,众数,极差分别是(  )
A.44,45,56B.44,43,57C.44,43,56D.45,43,57

查看答案和解析>>

同步练习册答案