精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)若,求函数的单调区间和最小值.

(2)若有两个极值求实数的取值范围。

(3)若,且,比较的大小,并说明理由。

【答案】(1)的单调减区间为单调增区间为.

(2).

(3)理由见解析.

【解析】分析:(1)对函数求导,利用导数的正负,可得函数的单调区间,从而求得函数的最小值,得到结果;

(2)根据函数有两个极值点,得到其导数等于零有两个不等的正根,且在根的两侧导数的符号是相反的,分类讨论求得结果;

(3)利用导数研究其大小,借助于基本不等式求得结果.

详解:(1)

解得列表得

0

单调减

极小值

单调增

的单调减区间为单调增区间为

(2)有两个极值点

上有两个不同的零点,且零点左右的的符号的相反.

上恒成立所以上单调增上最多有一个零点不合题意

解得

上单调增上单调减

所以上最多有一个零点不合题意;若

(取其他小于0的函数值也可)

上恒成立

上单调减 ,则

上各有一个零点且零点两侧的函数符号相反

(3)结论:.下面证明:

由(1)知:上单调减上单调增

同理

当且仅当时取等号

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点M(x1 , f(x1))和点N(x2 , g(x2))分别是函数f(x)=ex x2和g(x)=x﹣1图象上的点,且x1≥0,x2>0,若直线MN∥x轴,则M,N两点间的距离的最小值为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2+ax+a). (I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求a的值和函数f(x)的定义域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1)(a为常数)
(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(Ⅱ)若函数y=f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中 1:= =

Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:

受培时间一年以上

受培时间不足一年

总计

收入不低于平均值

60

20

收入低于平均值

10

20

总计

100

完成上表,并回答:能否在犯错概率不超过0.05的前提下认为收入与接受培训时间有关系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC对应的边分别为abc,已知

1)求cosB的值;

2)若b8cos2A3cosB+C)=1,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增大,下表是该地一农业银行连续五年的储蓄存款(年底余额),如下表:

为了研究方便,工作人员将上表的数据进行了处理,,得到下表:

1)求关于的线性回归方程;

2)求关于的线性回归方程;

3)用所求回归方程预测,到2020年底,该地储蓄存款额大约可达多少?

(附:线性回归方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 过点 ,左右焦点为F1(﹣c,0),F2(c,0),且椭圆C关于直线x=c对称的图形过坐标原点.

(I)求椭圆C方程;
(II)圆D: 与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆D的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.

查看答案和解析>>

同步练习册答案