精英家教网 > 高中数学 > 题目详情

【题目】已知函数是奇函数.

(1)求a的值和函数f(x)的定义域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

【答案】(1);(2)

【解析】分析:(1)根据函数奇偶性的定义建立方程即可求出a,根据分式函数的意义即可求出函数的定义域.
(2)根据函数奇偶性和单调性的性质将不等式进行转化求解即可.

详解:

(1)因为函数f(x)=a是奇函数,所以f(-x)=-f(x),

+a=a,即,从而有1-a=a,解得a.

又2x-1≠0,所以x≠0,故函数f(x)的定义域为(-∞,0)∪(0,+∞).

(2)由f(-m2+2m-1)+f(m2+3)<0,得f(-m2+2m-1)<-f(m2+3),因为函数f(x)为奇函数,所以f(-m2+2m-1)<f(-m2-3).

由(1)可知函数f(x)在(0,+∞)上是减函数,从而在(-∞,0)上是减函数,又-m2+2m-1<0,-m2-3<0,所以-m2+2m-1>-m2-3,解得m>-1,且所以不等式的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,等差数列满足

1)分别求数列的通项公式;

2)若对任意的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M(x,y)满足,点M的轨迹为曲线E.

(1)求E的标准方程;

(2)过点F(1,0)作直线交曲线E于P,Q两点,交轴于R点,若,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x-4| (x∈R)

(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;

(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;

(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知双曲线 =1(a>0,b>0),A1、A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点Pi=(1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是(
A.(
B.(
C.(1,
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD与直角梯形ABEF,∠DAF=∠FAB=90°,点G为DF的中点,AF=EF= ,P在线段CD上运动.
(1)证明:BF∥平面GAC;
(2)当P运动到CD的中点位置时,PG与PB长度之和最小,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求函数的单调区间和最小值.

(2)若有两个极值求实数的取值范围。

(3)若,且,比较的大小,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.

(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为 ,试确定点M在EC上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

同步练习册答案