【题目】已知函数是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)解不等式f(-m2+2m-1)+f(m2+3)<0.
【答案】(1);(2)
【解析】分析:(1)根据函数奇偶性的定义建立方程即可求出a,根据分式函数的意义即可求出函数的定义域.
(2)根据函数奇偶性和单调性的性质将不等式进行转化求解即可.
详解:
(1)因为函数f(x)=+a是奇函数,所以f(-x)=-f(x),
即+a=-a,即=,从而有1-a=a,解得a=.
又2x-1≠0,所以x≠0,故函数f(x)的定义域为(-∞,0)∪(0,+∞).
(2)由f(-m2+2m-1)+f(m2+3)<0,得f(-m2+2m-1)<-f(m2+3),因为函数f(x)为奇函数,所以f(-m2+2m-1)<f(-m2-3).
由(1)可知函数f(x)在(0,+∞)上是减函数,从而在(-∞,0)上是减函数,又-m2+2m-1<0,-m2-3<0,所以-m2+2m-1>-m2-3,且解得m>-1,且,所以不等式的解集为
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)满足,点M的轨迹为曲线E.
(1)求E的标准方程;
(2)过点F(1,0)作直线交曲线E于P,Q两点,交轴于R点,若,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x-4| (x∈R)
(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;
(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】知双曲线 ﹣ =1(a>0,b>0),A1、A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点Pi=(1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是( )
A.( , )
B.( , )
C.(1, )
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形ABCD与直角梯形ABEF,∠DAF=∠FAB=90°,点G为DF的中点,AF=EF= ,P在线段CD上运动.
(1)证明:BF∥平面GAC;
(2)当P运动到CD的中点位置时,PG与PB长度之和最小,求二面角P﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥ AB,M是EC上的点(不与端点重合),F为DA上的点,N为BE的中点.
(Ⅰ)若M是EC的中点,AF=3FD,求证:FN∥平面MBD;
(Ⅱ)若平面MBD与平面ABD所成角(锐角)的余弦值为 ,试确定点M在EC上的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Acosωx的图象,只需将函数y=f(x)的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com