【题目】已知动点M(x,y)满足
,点M的轨迹为曲线E.
(1)求E的标准方程;
(2)过点F(1,0)作直线交曲线E于P,Q两点,交
轴于R点,若
,证明:
为定值.
【答案】(1)
;(2)-4.
【解析】分析:(Ⅰ)由
,根据椭圆的定义可得点
的轨迹是以
为焦点的椭圆,可求得
,从而可得曲线
的方程;(II)设
,由
,点
在曲线
上可得
…,①同理可得
…,②,由①②可得
是方程
的两个根,
为定值
.
详解:(Ⅰ)由
,
可得点M(x,y)到定点A(﹣1,0),B(1,0)的距离等于之和等于
.
且AB
,所以动点N的轨迹是以C(﹣1,0),A(1,0)为焦点的椭圆,
且长轴长为
,焦距2c=2,所以,c=1,b=1,曲线E的方程为:
;
(Ⅱ)法1:设P(x1,y1),Q(x2,y2),R(0,y0),
由
,(x1,y1﹣y0)=λ1(1﹣x1,﹣y1),∴
,
∵过点F(1,0)作直线l交曲线E于P,∴
,
∴
…①
同理可得:
…②
由①②可得λ1、λ2是方程x2+4x+2﹣2y02=0的两个根,∴λ1+λ2为定值﹣4.
法2:依题意得
的斜率一定存在,设斜率为k,
则直线方程为
代入椭圆方程得:![]()
设
,则
,
由
得:
得![]()
同理得:![]()
![]()
则
为定值。
科目:高中数学 来源: 题型:
【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P. (Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点M(x1 , f(x1))和点N(x2 , g(x2))分别是函数f(x)=ex﹣
x2和g(x)=x﹣1图象上的点,且x1≥0,x2>0,若直线MN∥x轴,则M,N两点间的距离的最小值为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的分别为a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2
,求b;
(2)若a=2
,且△ABC的面积为
,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.
(1)若学生宿舍建筑为
层楼时,该楼房综合费用为
万元,综合费用是建筑费用与购地费用之和),写出
的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?
【答案】(1)
;(2)学校应把楼层建成
层,此时平均综合费用为每平方米
万元
【解析】
由已知求出第
层楼房每平方米建筑费用为
万元,得到第
层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高
万元
,然后利用等差数列前
项和求建筑
层楼时的综合费用
;
设楼房每平方米的平均综合费用为
,则
,然后利用基本不等式求最值.
解:
由建筑第5层楼房时,每平方米建筑费用为
万元,
且楼房每升高一层,整层楼每平方米建筑费用提高
万元,
可得建筑第1层楼房每平方米建筑费用为:
万元.
建筑第1层楼房建筑费用为:
万元
.
楼房每升高一层,整层楼建筑费用提高:
万元
.
建筑第x层楼时,该楼房综合费用为:
.
;
设该楼房每平方米的平均综合费用为
,
则:
,
当且仅当
,即
时,上式等号成立.
学校应把楼层建成10层,此时平均综合费用为每平方米
万元.
【点睛】
本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.
【题型】解答题
【结束】
20
【题目】已知
.
(1)求函数
的最小正周期和对称轴方程;
(2)若
,求
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
.
(1)求函数
的最小正周期和对称轴方程;
(2)若
,求
的值域.
【答案】(1)对称轴为
,最小正周期
;(2)![]()
【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到
,由周期公式和对称轴公式可得答案;(2)由x的范围得到
,由正弦函数的性质即可得到值域.
(1)![]()
![]()
令
,则
的对称轴为
,最小正周期
;
(2)当
时,
,
因为
在
单调递增,在
单调递减,
在
取最大值,在
取最小值,
所以
,
所以
.
【点睛】
本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.
【题型】解答题
【结束】
21
【题目】已知等比数列
的前
项和为
,公比
,
,
.
(1)求等比数列
的通项公式;
(2)设
,求
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(x2+ax+a). (I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若关于x的不等式f(x)≤ea在[a,+∞)上有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增大,下表是该地一农业银行连续五年的储蓄存款(年底余额),如下表:
![]()
为了研究方便,工作人员将上表的数据进行了处理,
,得到下表:
![]()
(1)求
关于
的线性回归方程;
(2)求
关于
的线性回归方程;
(3)用所求回归方程预测,到2020年底,该地储蓄存款额大约可达多少?
(附:线性回归方程:
,
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com