【题目】下列命题错误的是( )
A. 若p∨q为假命题,则p∧q为假命题
B. 若a,b∈[0,1],则不等式a2+b2<
成立的概率是![]()
C. 命题“x∈R,使得x2+x+1<0”的否定是“x∈R,x2+x+1≥0”
D. 已知函数f(x)可导,则“f′(x0)=0”是“x0是函数f(x)的极值点”的充要条件
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,
,其中
.
(1)设
,求证:数列
是等差数列,并求出
的通项公式;
(2)设
,数列
的前
项和为
,是否存在正整数
,使得
对于
恒成立,若存在,求出
的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划在办公大厅建一面长为
米的玻璃幕墙.先等距安装
根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为
米的玻璃造价为
元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为
元(总造价=立柱造价+玻璃造价).
(1)求
关于
的函数关系式;
(2)当
时,怎样设计能使总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间
的有8人.
![]()
(I)求直方图中
的值及甲班学生每天平均学习时间在区间
的人数;
(II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数,
),以
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)设
,直线
交曲线
于
两点,
是直线
上的点,且
,当
最大时,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AC=
,AB=2BC=2,AC⊥FB.
![]()
(1)求证:AC⊥平面FBC;
(2)求四面体FBCD的体积;
(3)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com