精英家教网 > 高中数学 > 题目详情
2.如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(1)求证:DF∥平面ABC;
(2)求证:平面DBE⊥平面ABE.

分析 (1)取AB的中点G,证明FG平行且等于CD,可得四边形FMCD为平行四边形,进而得到DF∥CG,从而证明DF∥平面ABC.
(2)取AB中点G,由(1)可知四边形CDFG为平行四边形,可得CG∥DF.根据题意可得:平面ABE⊥平面ABC,可得CG⊥平面ABE,进而得到DF⊥平面ABE,即可证明面面垂直.

解答 (1)证明:取AB中点G,连线FG、CG,F为BE中点,
∴GF∥AE,GF=$\frac{1}{2}$AE,又AE⊥平面ABC,CD⊥平面ABC,且CD=$\frac{1}{2}$AE,
∴GF∥CD,GF=CD,
∴四边形CDFG为平行四边形
∴DF∥CG,又DF?平面ABC,CG?平面ABC
∴DF∥平面ABC.
(2)证明:取AB中点G,由(1)可知四边形CDFG为平行四边形,
∴CG∥DF又AE⊥平面ABC,AE?平面ABE
∴平面ABE⊥平面ABC,交线为AB.
又△ABC为正三角形,G为AB中点
∴CG⊥AB,
∴CG⊥平面ABE又CG∥DF,
∴DF⊥平面ABE,
又DF?平面DBE,
∴平面DBE⊥平面ABE.

点评 本题考查证明线面平行以及面面垂直的判定定理,要求熟练掌握相应的判定定理,考查学生的推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC=6,EC=6,则AD的长为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若sinx=-$\frac{1}{3}$,x∈[0,2π],求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.证明:平面AB1C⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若一球的表面积为8π,则它的体积为(  )
A.$\frac{4\sqrt{2}π}{3}$B.$\frac{8\sqrt{2}π}{3}$C.$\frac{32π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某人在山外一点测得山顶的仰角为42°,沿水平面退后30米,又测得山顶的仰角为39°,则山高为242米(sin42°≈0.6691,sin39°≈0.6293,sin3°≈0.0523)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知⊙O1与⊙O2相交于A、B两点,P是⊙O1上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O1于点N.
(1)点E是$\widehat{AN}$上异于A,N的任意一点,PE交CN于点M,求证:A,D,M,E四点共圆
(2)求证:PN2=PB•PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列a1、a2、…、an中的每一项都不为0,求证:
(1)若{an}成等差数列,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
(2)若$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,则{an}成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一般齿轮传动装置中有一个主动轮O2和一个从动轮O1,用皮带连接(假设皮带与轮子之间不发生滑动),直线O1O2是一条水平直线,主动轮O2的半径是R,从动轮O1的半径是r,且R=2r,主动轮每分钟逆时针转30圈.开始转动时,从动轮、主动轮上分别标有A1,A2两个点(如图所示),经过t秒A1,A2两个点运动到新位置B1,B2,设B1,B2到水平线O1O2的垂直高度(当A1,A2运动到水平线O1O2下方时,高度是负值)分别是h1,h2
(1)令f(t)=h1+h2,写出f(t)的解析式及定义域;
(2)试问经过多少秒,f(t)第一次达到最大;经过多少秒,f(t)第一次达到最小?

查看答案和解析>>

同步练习册答案