精英家教网 > 高中数学 > 题目详情
11.设数列a1、a2、…、an中的每一项都不为0,求证:
(1)若{an}成等差数列,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
(2)若$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$,则{an}成等差数列.

分析 (1)由{an}成等差数列,设公差为d,则$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,利用“裂项求和”即可证明;
(2)利用数学归纳法与等差数列的通项公式即可证明.

解答 证明:(1)∵{an}成等差数列,设公差为d,则$\frac{1}{{a}_{n}{a}_{n+1}}=\frac{1}{d}(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})$,
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{d}[(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}})]$=$\frac{1}{d}(\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}})$=$\frac{1}{d}•\frac{{a}_{n+1}-{a}_{1}}{{a}_{1}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{{a}_{1}{a}_{n+1}}$;
(2)利用数学归纳法证明:
(i)当n=2时,∵$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$=$\frac{2}{{a}_{1}{a}_{3}}$,∴a1+a3=2a2,∴a1,a2,a3成等差数列;
(ii)假设n≤k(k≥2),{ak+1}成等差数列.
则当n=k+1时,$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{k}{a}_{k+1}}+\frac{1}{{a}_{k+1}{a}_{k+2}}$=$\frac{k}{{a}_{1}{a}_{k+1}}+\frac{1}{{a}_{k+1}{a}_{k+2}}$=$\frac{k+1}{{a}_{1}{a}_{k+2}}$,
化为kak+2+a1=(k+1)ak+1
∴kak+2=(k+1)[a1+kd]-a1
化为ak+2=a1+(k+2-1)d,
因此当n=k+1时,数列{ak+2}成等差数列.
综上可得:?n∈N*,(n≥3),数列{an}成等差数列.

点评 本题考查了等差数列的通项公式及其性质、数学归纳法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,Sn为数列{an}的前n项和,满足a5=-1,S5=-12
(1)求数列{an}的通项公式;
(2)求前n项和为Sn,并指出当n为何值时,Sn取最小值;
(3)若Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(1)求证:DF∥平面ABC;
(2)求证:平面DBE⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,已知圆O1与圆O2相交于A、B两点,过A点作圆O1的切线交圆O2于点C,过点B作两圆的割线,分别交圆O1、圆O2于点D、E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若PA=6,PC=2,BD=9,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠A=60°,AB=2AC=8,过C作△ABC外接圆的切线CD,BD⊥CD于D,BD与外接圆交于点E,则DE=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.三棱柱A的直观图(图1)及三视图(图2)(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示,A为A的中点.
(Ⅰ)求证:B1C⊥平面BAC1
(Ⅱ)求平面C1BA与平面C1BD的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.到广州的高速铁路从武汉发车后,经过一段时间加速后以匀速360km/h行驶,最后减速停在长沙南站,已知减速时列车的加速度b与加速时间t的函数关系式为b(t)=-4000×3600t3(km:千米;h:小时),则列车减速所用的时间为10小时.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,n∈N*,其前n项和为Sn
(1)求证:数列{$\frac{1}{{{a}_{n}}^{2}}$}是等差数列;
(2)设数列{bn}的前n项和为Tn,且满足:$\frac{{T}_{n+1}}{{{a}_{n}}^{2}}$=$\frac{{T}_{n}}{{{a}_{n+1}}^{2}}$+16n2-8n-3.试确定b1的值,使得数列{bn}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1是图2的三视图,三棱锥B-ACD中,E,F分别是棱AB,AC的中点,△ABC的中线CE,BF交于点M.
(Ⅰ)证明:BD⊥AC;
(Ⅱ)求三棱锥A-DEF的体积;
(Ⅲ)在线段BD上是否存在一点P,使得DF∥平面CPE,若存在,求$\frac{BP}{DP}$的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案