精英家教网 > 高中数学 > 题目详情

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ)求证:
(Ⅱ)设平面与半圆弧的另一个交点为,
①求证://;
②若,求三棱锥E-ADF的体积.

(Ⅰ);(Ⅱ)①//;②

解析试题分析:(1)证明线线垂直,则可转化为线面垂直,由于圆周角的定义,则知,由矩形所在的平面垂直于该半圆所在平面,及面面垂直性质定理得,则可得平面平面
根据垂直的有关性质定理,则可得平面,故
(2)①证明线线平行,则可用过平面的一个平行线作于该平面相交的平面,则该直线与交线平行由,得平面,又由平面平面于直线,则根据线面平行的性质定理得 ,由平行的传递性得  ;②则体积可以用多种方法,有直接求法、割补法、转化法,对于此题可转化后用直接求法,求三棱锥E-ADF先转化;根据三棱锥的体积公式,则有

试题解析:
是半圆上异于的点,,又矩形所在的平面垂直于该半圆所在平面由面面垂直性质定理得平面平面 平面,故
(2)① 由,得平面,又平面平面于直线根据线面平行的性质定理得 ,故  ,②
考点:1.立体几何的平行垂直的证明,2.立体几何体积的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.

⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.

(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B;
(3)若底面ABC为边长为2的正三角形,BB1= ,求三棱锥B1-A1DC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的三视图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.

(1)求证:
(2)若的中点,求直线与平面所成角的正弦值;
(3) 若四点在同一球面上,求该球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某个实心零部件的形状是如下图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.

(1)证明:直线平面
(2)现需要对该零部件表面进行防腐处理.已知(单位:),每平方厘米的加工处理费为元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形与直角梯形所在平面互相垂直, .

(1)求证:平面
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个三棱柱的底面是边长3的正三角形,侧棱垂直于底面,它的三视图如图所示,.
(1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
 
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-ABC的侧面AACC与底面ABC垂直,AB=BC=CA=4,且AA⊥AC,AA=AC.

(Ⅰ)证明:AC⊥BA
(Ⅱ)求侧面AABB与底面ABC所成二面角的余弦值.

查看答案和解析>>

同步练习册答案