精英家教网 > 高中数学 > 题目详情

某个实心零部件的形状是如下图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.

(1)证明:直线平面
(2)现需要对该零部件表面进行防腐处理.已知(单位:),每平方厘米的加工处理费为元,需加工处理费多少元?

(1)详见解析;(2)所需加工处理费为元.

解析试题分析:(1)先证,再证平面,从而得到平面,在证明平面的过程中,利用四边形为正方形得到,再由直棱柱的性质得到平面,从而得到,再利用直线与平面垂直的判定定理得到平面;(2)先计算该几何体的表面积,然后利用单价乘以表面积便可以得到加工处理费.
试题解析:(1)因为四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,
所以AA2⊥AB,AA2⊥AD,又因为AB∩AD=A,所以AA2⊥平面ABCD.
连接BD,因为BD?平面ABCD,所以AA2⊥BD.
因为底面ABCD是正方形,所以AC⊥BD.
根据棱台的定义可知,BD与B1D1共面.
又已知平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,
平面BB1D1D∩平面A1B1C1D1=B1D1,所以B1D1∥BD.于是
由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1
又因为AA2∩AC=A,所以B1D1⊥平面ACC2A2.
(2)因为四棱柱ABCD-A2B2C2D2的底面是正方形,侧面是全等的矩形,
所以S1=S四棱柱上底面+S四棱柱侧面=(A2B2)2+4AB·AA2=102+4×10×30=1 300(cm2).
又因为四棱台A1B1C1D1-ABCD的上、下底面均是正方形,侧面是全等的等腰梯形.
所以S2=S四棱台下底面+S四棱台侧面
=(A1B1)2+4×(AB+A1B1)h等腰梯形的高
=202+4×(10+20)
=1120(cm2).
于是该实心零部件的表面积为S=S1+S2=1300+1120=2420(cm2),
故所需加工处理费为0.2S=0.2×2420=484(元).
考点:1.直线与平面垂直;2.空间几何体的表面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知一个四棱锥PABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.

(1)求四棱锥PABCD的体积;
(2)求证:平面APC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

()如图,四棱锥中,平面,底面是平行四边形,,的中点

(Ⅰ)求证:
(Ⅱ)试在线段上确定一点,使,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,且的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形分别是上的点,.沿将梯形翻折,使平面⊥平面(如图).的中点.

(1)当时,求证: ;
(2)当变化时,求三棱锥体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且

(Ⅰ)求证:
(Ⅱ)设平面与半圆弧的另一个交点为,
①求证://;
②若,求三棱锥E-ADF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,斜三棱柱中,侧面底面ABC,底面ABC是边长为2的等边三角形,侧面是菱形,,E、F分别是、AB的中点.

求证:(1)
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3

(1)证明:BE⊥平面BB1C1C;
(2)求点到平面EA1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图与三视图如图所示,分别是中点

(Ⅰ)求此多面体的体积;
(Ⅱ)求证:

查看答案和解析>>

同步练习册答案