| A. | ($\frac{π}{3}$,$\frac{π}{2}$) | B. | ($\frac{π}{4}$,$\frac{π}{3}$) | C. | ($\frac{π}{6}$,$\frac{π}{4}$) | D. | (0,$\frac{π}{6}$) |
分析 求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A的坐标;将A代入抛物线方程求出双曲线的三参数a,b,c的关系,求出双曲线的渐近线的斜率,求出倾斜角的范围.
解答 解:抛物线的焦点坐标为($\frac{p}{2}$,0);双曲线的焦点坐标为(c,0)
∴p=2c
∵点A 是两曲线的一个交点,且AF⊥x轴,
∴将x=c代入双曲线方程得到A(c,$\frac{{b}^{2}}{a}$)
将A的坐标代入抛物线方程得到$\frac{{b}^{4}}{{a}^{2}}$=2pc
4a4+4a2b2-b4=0
解得$\frac{b}{a}$=$\sqrt{2+2\sqrt{2}}$
双曲线的渐近线的方程为y=±$\frac{b}{a}$x
设倾斜角为α,则tanα=$\frac{b}{a}$=$\sqrt{2+2\sqrt{2}}$$>\sqrt{3}$
∴$\frac{π}{3}$<α<$\frac{π}{2}$
故选:A.
点评 本题考查由圆锥曲线的方程求焦点坐标、考查双曲线中三参数的关系及由双曲线方程求渐近线的方程.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 4 | C. | $\frac{2}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3e}$ | B. | $\frac{{e}^{2}}{6}$ | C. | $\frac{{e}^{2}}{2}$ | D. | $\frac{3e}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ②③④ | C. | ①③④ | D. | ①②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 线段 | B. | 椭圆的一部分 | C. | 抛物线 | D. | 双曲线的一部分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com