精英家教网 > 高中数学 > 题目详情
偶函数f(x)的定义域为D={x|x≠0},且满足对于任意x,y∈D,有f(xy)=f(x)+f(y),若x>1时,f(x)>0.
(1)求f(1)的值;
(2)求证f(x)在区间(0,+∞)上是增函数;
(3)若f(4)=1,求不等式f(3x+1)≤2的解集.
分析:(1)令x=y=1代入f(xy)=f(x)+f(y),即可求得f(1)的值;
(2)可令y=
1
x
,代入f(xy)=f(x)+f(y),得到f(x)+f(
1
x
)=0.再利用函数单调性的定义判断即可;
(3)利用偶函数f(x)在区间(0,+∞)上是增函数,f(4)=1,将不等式f(3x+1)≤2转化为|3x+1|≤16(x≠0),解之即可.
解答:解:(1)令x=y=1代入f(xy)=f(x)+f(y),得f(1)=0;
(2)令y=
1
x
,代入f(xy)=f(x)+f(y),得f(x)+f(
1
x
)=0,即f(
1
x
)=-f(x);
∵x>1时,f(x)>0,令0<x1<x2
x2
x1
>1,
∴f(
x2
x1
)=f(x2
1
x1
)=f(x2)+f(
1
x1
)=f(x2)-f(x1)>0,
∴f(x2)>f(x1).
∴f(x)在区间(0,+∞)上是增函数;
(3)∵偶函数f(x)在区间(0,+∞)上是增函数,f(4)=1,
∵f(3x+1)≤2=f(4)+f(4)=f(16),
∴|3x+1|≤16(x≠0),
∴-
17
3
≤x<0或0<x≤5.
∴所求不等式的解集为:{x|-
17
3
≤x<0或0<x≤5}.
点评:本题考查抽象函数及其用,着重考查函数的单调性,奇偶性及解绝对值不等式,突出考出化归思想与综合分析与应用的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是(  )
A、y=x2+1
B、y=|x|+1
C、y=
2x+1,x≥0
x3+1,x<0
D、y=
ex,x≥0
e-x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)的最小值为1,当x∈[0,+∞)时,f(x)=aex
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求最大的整数m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.(注:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f (x)的单调减区间为[0,+∞),则不等式f(x)<f(2-x)的解集是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)的最小值为3,且当x≥0时,f(x)=3ex+a(a为常数).
(1)求函数f(x)的解析式;
(2)求最大的整数m(m>1),使得存在实数t,对任意的x∈[1,m]都有f(x+t)<3ex.

查看答案和解析>>

同步练习册答案