精英家教网 > 高中数学 > 题目详情
精英家教网定义在(-∞,0)∪(0,+∞)上的奇函数f(x)在(0,+∞)上是减函数,且在x>0时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]>0的解集为(  )
A、(-∞,-2)∪(0,2)B、(-∞,-2)∪(2,+∞)C、(-2,0)∪(2,+∞)D、(-2,0)∪(0,2)
分析:由函数f(x)是定义在R上的奇函数,f(2)=0,则f(-2)=0,由于f(x)在(0,+∞)上是减函数,所以f(x)在(-∞,0)上是减函数,从而可得不等式组,故可得答案.
解答:解:由于函数为奇函数,所以不等式可化为xf(x)>0,∴
x>0
f(x)>0
x<0
f(x)<0

∵f(x)在(0,+∞)上是减函数,∴f(x)在(-∞,0)上是减函数
∵f(2)=0,∴f(-2)=0
x>0
f(x)>f(2)
x<0
f(x)<f(-2)

∴x∈(-2,0)∪(0,2)
故选D.
点评:解答本题的关键是根据已知条件,结合奇函数的性质,找出函数的零点,并以零点为端点将定义域分为几个不同的区间,然后在每个区间上结合函数的单调性进行讨论,这是分类讨论思想在解决问题的巨大作用的最好体现,分类讨论思想往往能将一个复杂的问题的简单化,是高中阶段必须要掌握的一种方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若定义在(-1,0)内的函数f(x)=log2a(x+1)>0,则a的取值范围是(  )
A、(0,
1
2
)
B、(0,
1
2
]
C、(
1
2
,+∞)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax2+(a-2b)x+a-1是定义在(-a,0)∪(0,2a-2)上的偶函数,则f(
a2+b25
)
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①集合A={ x|0≤x<3且x∈N }的真子集的个数是8;
②关于x的一元二次方程x2+mx+2m+1=0一个根大于1,一个根小于1,则实数m的取值范围m<-
2
3

③函数f(x)=x2+(3a+1)x+2a在 (-∞,4)上为减函数,则实数a的取值范围是a≤3;
④已知函数y=4x-4•2x+1(-1≤x≤2),则函数的值域为[-
3
4
,1];
⑤定义在(-1,0)的函数f(x)=log(2a)(x+1)满足f(x)>0的a的取值范围是(0,
1
2
);
⑥将三个数:x=20.2,y=(
1
2
)2
,z=log2
1
2

按从大到小排列正确的是z>x>y,其中正确的有
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在{x|x>0}上的增函数,且f(
x
y
)=f(x)-f(y)

(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a)+1过点(4,4).
(1)求实数a;
(2)将函数f(x)的图象向下平移1个单位,再向右平移a个单位后得到函数g(x)图象,设函数g(x)关于y轴对称的函数为h(x),试求h(x)的解析式;
(3)对于定义在(-4,0)上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2>h(x)m-1恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案