精英家教网 > 高中数学 > 题目详情
20.在正方体ABCD-A1B1C1D1中,E、F分别为棱BB1、BC的中点,则异面直线AB1与EF所成角的大小为              (  )
A.30°B.45°C.60°D.90°

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AB1与EF所成角的大小.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则A(2,0,0),B1(2,2,2),E(2,2,1),F(1,2,0),
$\overrightarrow{A{B}_{1}}$=(0,2,2),$\overrightarrow{EF}$=(-1,0,-1),
设异面直线AB1与EF所成角的大小为θ,
则cosθ=|cos<$\overrightarrow{A{B}_{1}},\overrightarrow{EF}$>|=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{EF}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{EF}|}$=$\frac{2}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=60°,
∴异面直线AB1与EF所成角的大小为60°.
故选:C.

点评 本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{|x-y|≤1}\\{|x+y|≤3}\end{array}\right.$,则|3x+y|的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是(  )
A.90B.45C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{2{x}^{2}-lnx,x>0}\end{array}\right.$,若函数y=f(x)-a恰有一个零点,则a的取值范围是[0,$\frac{1}{2}$-ln$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=si{n}^{2}α}\end{array}\right.$(α为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2:ρcos(θ-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,C3:ρ=2sinθ
(1)求曲线C1与C2的交点M在直角坐标系xoy中的坐标;
(2)设点A,B分别为曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数为f′(x),对?x∈R,f′(x)>f(x)都有成立,若f(1)=e,则不等式f(x)>ex的解是(  )
A.x>ln4B.0<x<ln4C.x>1D.0<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy,直线l的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).在以O为极点,x轴正半轴为极轴建立极坐标系中,曲线C:ρ=4sinθ.
(1)当m=-1,α=30°时,判断直线l与曲线C的位置关系;
(2)当m=1时,若直线与曲l线C相交于A,B两点,设P(1,0),且||PA|-|PB||=1,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足$\left\{{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-2y≤0}\end{array}}\right.$,则目标函数z=y-lnx的最小值为1-ln2.

查看答案和解析>>

同步练习册答案