精英家教网 > 高中数学 > 题目详情
15.记凸n(n≥3)边形的对角线的条数为f(n),则f(n)的表达式为(  )
A.f(n)=n+1B.f(n)=2n-1C.$f(n)=\frac{{n({n-3})}}{2}$D.$f(n)=\frac{{n({n+1})}}{2}$

分析 从一个顶点的对角线的条数为n-3,即可求出f(n)

解答 解:记凸n(n≥3)边形的对角线的条数为f(n),从一个顶点的对角线的条数为n-3,则凸n(n≥3)边形的对角线的条数为f(n)=$\frac{n(n-3)}{2}$,
故选:C.

点评 本题主要考查了多边形对角线的条数的公式总结,考查了简单的归纳推理.解答关键是能够从特殊中找到规律进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.点G是△ABC的重心,$|{\overrightarrow{AC}}|=1,|{\overrightarrow{BC}}|=\sqrt{2}$,且AG⊥BG,则sinC=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(1,cosx),x∈R,设f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)的对称轴方程;
(2)若f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),求f(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设直线l:(a+1)x+y+2-a=0(a∈R).
(1)求证:无论a取何值,直线必过第四象限.
(2)已知圆C:x2+y2=19,求直线l与圆C相交弦的最短弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0)
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λ\;t}\end{array}}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某湿地公园有一边长为4百米的正方形水域ABCD,如图,EF是其中轴线,水域正中央有一半径为1百米的圆形岛屿M,小岛上种植有各种花卉.现欲在线段AF上某点P处(AP的长度不超过1百米)开始建造一直线观光木桥与小岛边缘相切(不计木桥宽度),与BC相交于Q点.过Q点继续建造直线木桥NQ与小岛边缘相切,NQ与中轴线EF交于N点,N点与E点也以木桥直线相连.
(1)当AP=1百米时,求木桥PQ的长度(单位:百米);
(2)问是否存在常数m,使得mQN+NE为定值?如果存在,请求出常数m,并给出定值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知O为原点,当θ=-$\frac{π}{6}$时,参数方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=9sinθ}\end{array}\right.$(θ为参数)上的点为A,则直线OA的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲、乙、丙三人到户外植树,三人分工合作,一人挖坑和填土,一人施肥,一人浇水,他们的身高各不同,现了解到以下情况:
①甲不是最高的;
②最高的没浇水;
③最矮的施肥;
④乙不是最矮的,也没挖坑和填土.
可以判断丙的分工是挖坑和填土(从挖坑,施肥,浇水中选一项).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下表所示为X,Y,Z三种食物的维生素含量及成本,某食品厂欲将三种食物混合,制成至少含44000单位维生素A及48000单位维生素B的混合物100千克,所用的食物X,Y,Z的质量分别为x,y,z(千克),混合物的成本最少为960元.
XYZ
维生素A(单位/千克)400600400
维生素B(单位/千克)800200400
成本(元/千克)12108

查看答案和解析>>

同步练习册答案