分析 (1)利用直线系求出直线经过的定点坐标,然后判断即可.
(2)求出圆心到直线的距离,半径半弦长的关系求解即可.
解答 解:(1)直线l:(a+1)x+y+2-a=0,化为:a(x-1)+(x+y+2)=0,
可知直线恒过(1,-3),因为(1,-3)在第四象限,
所以无论a取何值,直线必过第四象限.
(2)圆的半径为:$\sqrt{19}$,
圆心到直线的距离为:$\sqrt{({1-0)}^{2}+({-3-0)}^{2}}$=$\sqrt{10}$,
直线l与圆C相交弦的最短弦长:2$\sqrt{19-10}$=6.
故答案为:6.
点评 本题考查直线与圆的位置关系的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9\sqrt{3}}{8}$ | B. | $\frac{9}{8}$ | C. | 9$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0]∪[$\frac{3}{4}$,+∞) | B. | (-∞,0]∪[$\frac{4}{3}$,+∞) | C. | [0,$\frac{3}{4}$] | D. | [0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(n)=n+1 | B. | f(n)=2n-1 | C. | $f(n)=\frac{{n({n-3})}}{2}$ | D. | $f(n)=\frac{{n({n+1})}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 拼图数x/个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| 加工时间y/分钟 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
| 参考数据 | 合计 | ||||||||||
| x | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 550 |
| y | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 | 917 |
| xi2 | 100 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | 38500 |
| xiyi | 620 | 1360 | 2250 | 3240 | 4450 | 5700 | 7140 | 8840 | 10350 | 12200 | 55950 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com