精英家教网 > 高中数学 > 题目详情
20.某湿地公园有一边长为4百米的正方形水域ABCD,如图,EF是其中轴线,水域正中央有一半径为1百米的圆形岛屿M,小岛上种植有各种花卉.现欲在线段AF上某点P处(AP的长度不超过1百米)开始建造一直线观光木桥与小岛边缘相切(不计木桥宽度),与BC相交于Q点.过Q点继续建造直线木桥NQ与小岛边缘相切,NQ与中轴线EF交于N点,N点与E点也以木桥直线相连.
(1)当AP=1百米时,求木桥PQ的长度(单位:百米);
(2)问是否存在常数m,使得mQN+NE为定值?如果存在,请求出常数m,并给出定值,如果不存在,请说明理由.

分析 (1)设PQ斜率为k,根据直线PQ与圆M相切列方程解出k,得出Q点坐标,从而可计算PQ的长;
(2)设PQ斜率为k,NQ斜率为k1,AP=a,根据切线的性质得出k,k1与a的关系,求出mNQ+NE,化简即可得出结论.

解答 解:(1)以A为原点,AB所在直线为x轴,
建立平面直角坐标系如图(单位:百米).
圆M的方程为:(x-2)2+(y-2)2=1,P(1,0),
设直线PQ的方程为y=k(x-1),则$\frac{|k-2|}{\sqrt{{k}^{2}+1}}$=1,
解得k=$\frac{3}{4}$,∴直线PQ的方程为y=$\frac{3}{4}$(x-1),
把x=4代入直线方程得y=$\frac{9}{4}$,即Q(4,$\frac{9}{4}$),
∴PQ=$\sqrt{P{B}^{2}+B{Q}^{2}}$=$\frac{15}{4}$.
答:木桥PQ的长度为$\frac{15}{4}$百米.
(2)设AP=a百米,(0≤a≤1),
设PQ方程为y=k(x-a),则$\frac{|k(2-a)-2|}{\sqrt{{k}^{2}+1}}$=1,
∴2-k(2-a)=$\sqrt{{k}^{2}+1}$,
设直线NQ斜率为k1,则直线NQ的方程为y-k(4-a)=k1(x-4),
令x=2得N(2,k(4-a)-2k1),
∴NE=4+2k1-k(4-a),
∵直线NQ与圆M相切,∴$\frac{|{k}_{1}(2-4)-2+k(4-a)|}{\sqrt{1+{{k}_{1}}^{2}}}$=1,
∴-2k1-2+k(4-a)=$\sqrt{{{k}_{1}}^{2}+1}$,
∴NQ=$\sqrt{1+{{k}_{1}}^{2}}$|4-2|=2$\sqrt{1+{{k}_{1}}^{2}}$=2[-2k1-2+k(4-a)],
∴mNQ+NE=2m[-2k1-2+k(4-a)]+4+2k1-k(4-a)=(1-2m)[2+2k1-k(4-a)]+2,
∴当1-2m=0,即m=$\frac{1}{2}$时,$\frac{1}{2}$NQ+NE=2.
答:存在常数m=$\frac{1}{2}$,使得$\frac{1}{2}$NQ+NE为定值2.

点评 本题考查了直线与圆的位置关系,距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=|2x+a|在区间[3,+∞)上是增函数,则a的取值范围是[-6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若实数x、y满足x2+y2+2x+2y+1=0,则$\frac{y}{x-1}$的取值范围是(  )
A.(-∞,0]∪[$\frac{3}{4}$,+∞)B.(-∞,0]∪[$\frac{4}{3}$,+∞)C.[0,$\frac{3}{4}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列定积分的值:
(1)${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx
(2)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cos2xdx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.记凸n(n≥3)边形的对角线的条数为f(n),则f(n)的表达式为(  )
A.f(n)=n+1B.f(n)=2n-1C.$f(n)=\frac{{n({n-3})}}{2}$D.$f(n)=\frac{{n({n+1})}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下面图形都是由小正三角形构成的,设第个图形中的黑点总数为f(n).

(1)求f(2),f(3),f(4),f(5)出的值;
(2)找出f(n)与f(n+1)的关系,并求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若某空间几何体的三视图如图所示,则该几何体的表面积是(  )
A.48+πB.48-πC.48+2πD.48-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某几何体的三视图如图所示,则其体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数a,b满足a>b且lna•lnb>0,则(  )
A.loga2>logb2B.a•lna>b•lnbC.2ab+1>2a+bD.ab>ba

查看答案和解析>>

同步练习册答案