精英家教网 > 高中数学 > 题目详情
7.已知O为原点,当θ=-$\frac{π}{6}$时,参数方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=9sinθ}\end{array}\right.$(θ为参数)上的点为A,则直线OA的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 求出A点坐标,计算直线OA的斜率,从而得出倾斜角的大小.

解答 解:A点坐标为($\frac{3\sqrt{3}}{2}$,-$\frac{9}{2}$),
∴直线OA的斜率k=-$\sqrt{3}$,
∴直线OA的倾斜角为$\frac{2π}{3}$.
故选C.

点评 本题考查了直线的参数方程,直线的一般方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.观察下列等式
1=1                    
2+3+4=9                
3+4+5+6+7=25            
4+5+6+7+8+9+10=49      
5+6+7+8+9+10+11+12+13=81
照此规律下去
(Ⅰ)写出第6个等式;
(Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{a+lnx}{x-1}$(x>1)
(1)当a=1时,求函数f(x)的单调递减区间;
(2)当a=0时,判断函数f(x)的单调性;
(3)当x>1时,证明:$\frac{lnx}{x-1}$>$\frac{ln({e}^{x}-1)}{{e}^{x}-2}$(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.记凸n(n≥3)边形的对角线的条数为f(n),则f(n)的表达式为(  )
A.f(n)=n+1B.f(n)=2n-1C.$f(n)=\frac{{n({n-3})}}{2}$D.$f(n)=\frac{{n({n+1})}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P($\sqrt{3}$,0),斜率为-$\sqrt{3}$,曲线C:ρ=$\frac{2}{\sqrt{cos2θ+5si{n}^{2}θ}}$.
(1)写出直线l的一个参数方程及曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若某空间几何体的三视图如图所示,则该几何体的表面积是(  )
A.48+πB.48-πC.48+2πD.48-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a,b,c为正实数,且a+b≤6c,$\frac{2}{a}$+$\frac{3}{b}$≤$\frac{2}{c}$,则$\frac{3a+8b}{c}$的取值范围为(0,48).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程:$\left\{\begin{array}{l}x=t\\ y=1+2t\end{array}$(t为参数)和圆C的极坐标方程:ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).P(0,1)
(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(2)判断直线l和圆C的位置关系,若相交于两点A、B,求|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,M是线段AB的中点,$\overrightarrow{AN}=\frac{1}{2}\overrightarrow{NC}$,BN与CM相交于点E,设$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,
(1)用基底$\vec a$,$\vec b$表示$\overrightarrow{BN}$和$\overrightarrow{CM}$;
(2)用基底$\vec a$,$\vec b$表示$\overrightarrow{AE}$.

查看答案和解析>>

同步练习册答案