分析 由对数运算知log${\;}_{\sqrt{3}}$$\frac{1}{81}$=-8,从而化简可得x3+3x($\sqrt{3}$i)2+3x2$\sqrt{3}$i+($\sqrt{3}$i)3=-8,从而解得.
解答 解:由对数运算知,log${\;}_{\sqrt{3}}$$\frac{1}{81}$=-8,
故(x+$\sqrt{3}$i)3=-8,
即x3+3x($\sqrt{3}$i)2+3x2$\sqrt{3}$i+($\sqrt{3}$i)3=-8,
即x3-9x+3x2$\sqrt{3}$i-3$\sqrt{3}$i=-8,
故$\left\{\begin{array}{l}{{x}^{3}-9x=-8}\\{3\sqrt{3}{x}^{2}-3\sqrt{3}=0}\end{array}\right.$,
解得,x=1.
点评 本题考查了对数运算的应用及复数相等的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 60°或120° | D. | 30°或150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com