精英家教网 > 高中数学 > 题目详情
15.一个几何体的三视图如图,则该几何体的体积为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 根据几何体的三视图,得出该几何体是两个三棱锥的组合体,画出图形,结合图形求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是两个三棱锥的组合体,如图所示,
则该几何体的体积为
V=V三棱锥E-ACD+V三棱锥E-ABC
=$\frac{1}{3}$×$\frac{1}{2}$×2×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$+$\frac{1}{3}$×$\frac{1}{2}$×2×$\sqrt{3}$×$\sqrt{3}$
=$\frac{3}{2}$.
故选:C.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是关键三视图还原出几何体的结构特征,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康,同心共筑中国梦”主题开展全民健身活动,组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.
(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(Ⅱ)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求至少有1名女性群众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知a=3,b=4,c=$\sqrt{37}$,则△ABC的面积是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若执行如图所示的程序框图,输入x1=1,x2=2,x3=3,$\overline{x}$=2,则输出的数S等于(  )
A.$\frac{2}{3}$B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.反比例函数y=$\frac{k}{x}$(k≠0)的图象经过(-2,5)和($\sqrt{2}$,n),
求(1)n的值;
(2)判断点B(4$\sqrt{2}$,-$\sqrt{2}$)是否在这个函数图象上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线y=2x+b与曲线y=$\sqrt{4-{x}^{2}}$有且仅有一个公共点,则b的取值范围为{b|-4≤b<4,或b=$2\sqrt{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{sin(\frac{π}{2}x-π),3≤x≤7}\end{array}\right.$,若存在实数a,b,c,d,满足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,则a+b+c+d的取值范围是(12,$\frac{40}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.是否存在实数x,使得(x+$\sqrt{3}$i)3=log${\;}_{\sqrt{3}}$$\frac{1}{81}$成立?如果存在,求出x的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在平面直角坐标系xOy中,角α的终边在直线y=$\sqrt{2}$x位于第一象限的部分,则sin(α+$\frac{π}{6}$)=(  )
A.$\frac{3\sqrt{2}-\sqrt{3}}{6}$B.$\frac{\sqrt{3}-3\sqrt{2}}{6}$C.$\frac{3\sqrt{2}+\sqrt{3}}{6}$D.-$\frac{\sqrt{3}+3\sqrt{2}}{6}$

查看答案和解析>>

同步练习册答案