精英家教网 > 高中数学 > 题目详情
5.某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康,同心共筑中国梦”主题开展全民健身活动,组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.
(Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第1组或第4组的概率;
(Ⅱ)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求至少有1名女性群众的概率.

分析 (Ⅰ)设第1组[20,30)的频率为f1,利用概率和为1,求解即可,再根据概率公式计算即可;
(Ⅱ)第1组中共有6名群众,其中女性群众共3名,记第1组中的3名男性群众分别为A,B,C,3名女性群众分别为x,y,z,根据概率公式计算即可.

解答 解:(Ⅰ)设第1组[20,30)的频率为f1,则由题意可知,
f1=1-(0.010+0.035+0.030+0.020)×10=0.05,
被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25,
∴估计被采访人恰好在第1组或第4组的概率为0.25,
(Ⅱ)第1组[20,30)的人数为0.05×120=6,
∴第1组中共有6名群众,其中女性群众共3名,
记第1组中的3名男性群众分别为A,B,C,3名女性群众分别为x,y,z,
从第1组中随机抽取2名群众组成维权志愿者服务队,共有15个基本事件,列举如下:AB,AC,Ax,Ay,Az,BC,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,
至少有1名女性群众Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz共12个基本事件,
∴从第1组中随机抽取2名群众组成维权志愿者服务队,至少有1名女性群众的概率为$\frac{12}{15}$=$\frac{4}{5}$.

点评 本题考查古典概型概率公式的应用概率的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知实数a,b∈R,试写出命题:“若a2+b2=0,则ab=0”的逆命题、否命题、逆否命题,并判断三个命题的真假(直接写出真假性)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(-2)的值为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个结论中,正确的有(  )(填所有正确结论的序号).
①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;
②“$\left\{\begin{array}{l}{a>0}\\{△={b}^{2}-4ac}≤0\end{array}\right.$”是“一元二次不等式ax2+bx+c≥0的解集为R”的充要条件
③“x≠1”是“x2≠1”的充分不必要条件;
④“x≠0”是“x+|x|>0”的必要不充分条件.
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|2x-a|,
(Ⅰ)若a=4,求f(x)≤x的解集;
(Ⅱ)若f(x+1)>|2-a|对?x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数y=f(x)x∈[0,1]同时满足下列三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③任意x1,x2∈[0,1],当x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立,我们就称f(x)为“稳定函数”.请根据上述信息解决以下问题:
(1)已知h(x)是稳定函数,求h(0)的值;
(2)若函数g(x)=ax-1(a>0且a≠1),问是否存在实数a,使得g(x)是稳定函数?请说明理由;
(3)已知f(x)是稳定函数,存在x0∈[0,1],使得f(x0)∈[0,1]且f(f(x0))=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.平面直角坐标系中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的两点M,N,点P(2,1)为线段MN的中点,椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求直线MN的方程;
(2)若F1是椭圆C右焦点,且$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$=-$\frac{1}{3}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图,则该几何体的体积为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案