分析 根据根式和对数成立的条件进行求解即可.
解答 解:要使$\frac{{\sqrt{4a-2}}}{{{{log}_4}(3-a)}}$有有意义,
则$\left\{\begin{array}{l}{4a-2≥0}\\{3-a>0}\\{lo{g}_{4}(3-a)≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{a≥\frac{1}{2}}\\{a<3}\\{a≠2}\end{array}\right.$,
即$\frac{1}{2}$≤a<2或2<a<3,
故答案为:$\frac{1}{2}$≤a<2或2<a<3
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | B. | [-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z | ||
| C. | [-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z | D. | [-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com