精英家教网 > 高中数学 > 题目详情
3.若$\frac{{\sqrt{4a-2}}}{{{{log}_4}(3-a)}}$有意义,则a的取值范围是$\frac{1}{2}$≤a<2或2<a<3.

分析 根据根式和对数成立的条件进行求解即可.

解答 解:要使$\frac{{\sqrt{4a-2}}}{{{{log}_4}(3-a)}}$有有意义,
则$\left\{\begin{array}{l}{4a-2≥0}\\{3-a>0}\\{lo{g}_{4}(3-a)≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{a≥\frac{1}{2}}\\{a<3}\\{a≠2}\end{array}\right.$,
即$\frac{1}{2}$≤a<2或2<a<3,
故答案为:$\frac{1}{2}$≤a<2或2<a<3

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设集合M={x|-1≤x≤2},N={x|x≤a},若M⊆N,则a的取值范围是(  )
A.a≤2B.a≥2C.a≤-1D.a≥-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sin(ωx-φ)-1(ω>0,|φ|<π)的一个零点是x=$\frac{π}{3}$,直线x=-$\frac{π}{6}$函数图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(  )
A.[-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈ZB.[-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z
C.[-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,$\overrightarrow{AB}=({{x_1},{y_1}}),\overrightarrow{AC}=({{x_2},{y_2}})$.
(1)若$\overrightarrow{AB}=({3,1}),\overrightarrow{AC}=({-1,3})$.求三角形ABC的面积S
(2)求三角形ABC的面积S

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知关于x的不等式$\frac{x+1}{x+a}≤2$的解集为p,若1∉p,则实数a的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=x2+x-2a,若y=f(x)在区间(-1,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.区间[x1,x2]的长度为x2-x1.已知函数y=4|x|的定义域为[a,b],值域为[1,4],则区间[a,b]长度的最大值与最小值之差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{x^2}{8}-\frac{y^2}{6}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数$f(x)=Asin(ωx+α)(A>0,ω>0,-\frac{π}{2}<α<\frac{π}{2})$的最小正周期是π,且当x=$\frac{π}{6}$时,f(x)取得最大值5.
(1)求f(x)的解析式及单调减区间;
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.

查看答案和解析>>

同步练习册答案