精英家教网 > 高中数学 > 题目详情

已知函数(其中),且函数的图象在     点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数m的取值范围;

(1)(2)

解析试题分析:解:(Ⅰ)∵,∴
在点处切线的斜率,切点
在点处切线方程为, 2分
,∴
在点处切线的斜率,切点
在点处切线方程为, 4分
解得. 6分
(Ⅱ)由,故上有解,
,只需. 8分
①当时,,所以; 10分
②当时,∵
,∴,∴
,即函数在区间上单调递减,
所以,此时. 13分
综合①②得实数m的取值范围是. 14分
考点:导数的运用
点评:解决的关键是对于导数的符号与函数单调性的关系的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数在区间上是增函数,在区间上是减函数,又
(1)求的解析式;
(2)若在区间上恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数处的切线与轴垂直,求的极值。
(2)若函数,求实数a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

文科设函数。(Ⅰ)若函数处与直线相切,①求实数,b的值;②求函数上的最大值;(Ⅱ)当时,若不等式对所有的都成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1) 求的单调区间与极值;
(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(I)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(II)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若A,B是函数f(x)图象上不同的两点,且直线AB的斜率恒大于1,求实数m的取值范围。

查看答案和解析>>

同步练习册答案