精英家教网 > 高中数学 > 题目详情
11.设fn(x)=$\sum_{i=1}^{n}$|x-i|,n∈N*.
(1)解不等式:f2(x)<x+1;
(2)求f5(x)的最小值.

分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)利用绝对值三角不等式求得,|x-1|+|x-5|得最小值,|x-2|+|x-4|得最小值,|x-3|的最小值,可得f5(x)的最小值.

解答 解:(1)不等式f2(x)<x+1,即|x-1|+|x-2|<x+1,
∴$\left\{\begin{array}{l}{x<1}\\{1-x+2-x<x+1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{1≤x≤2}\\{x-1+(2-x)<x+1}\end{array}\right.$ ②,或 $\left\{\begin{array}{l}{x>2}\\{x-1+x-2<x+1}\end{array}\right.$ ③.
解①求得$\frac{2}{3}$<x<1,解②求得1≤x≤2,解③求得2≤x<4.
综上可得,不等式的解集为{x|$\frac{2}{3}$<x<4}.
(2)∵f5(x)=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|,
∵|x-1|+|x-5|≥|x-1-(x-5)|=4,当且仅当1≤x≤5时,取等号,即当x∈[1,5]时,|x-1|+|x-5|≥取得最小值为4;
|x-2|+|x-4|≥|x-2-(x-4)|=2,当且仅当2≤x≤4时,取等号,即当x∈[2,4]时,|x-2|+|x-4|≥取得最小值为2;
对于|x-3|.只有当x=3时,取得最小值为0.
综上可得,只有当x=3时,f5(x)=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|取得最小值为4+2+0=6.

点评 本题主要考查绝对值不等式的解法,绝对值三角不等式的应用,求函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在区间[m,2m+1]随机取一个数x,使得不等式|x-8|+|x-11|≤4成立的概率是$\frac{1}{2}$,则正数m的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正方体ABCD-A1B1C1D1中,E、F,H,O,O′分别为BC,CC1,A1A,BD,B1D1的中点.求证:
(1)EF∥AD1
(2)BF∥HD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下推理是类比推理的个数是(  )
①由等比数列的性质推出等差数列的性质;
②由等式的性质推出不等式性质;
③由n=1,2,3时2n与2n+1的大小推出2n>2n+1(n>3,n∈N+);
④由实数的运算律推出虚数的运算律.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,真命题是(  )
A.a-b=0的充要条件是$\frac{a}{b}$=1B.若p∧q为假,则p∨q为假
C.?x0∈R,|x0|<0D.?x∈R,2x>x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某随机变量ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为(  )
A.0.2B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.2名男生和3名女生共5名同学站成一排,则3名女生中有且只有2名女生相邻的概率是(  )
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)用分析法证明:$\sqrt{2}$+$\sqrt{11}$<$\sqrt{3}$+$\sqrt{10}$;
(2)用反证法证明:三个数a,2a2-l,a+l中,至少有一个大于或等于-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于非零向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,下列命题正确的是(  )
A.若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,则λ12=0
B.若$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow a$在$\overrightarrow b$上的投影为$|\overrightarrow a|$
C.若$\overrightarrow a⊥\overrightarrow b$,则$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$
D.若$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c$,则$\overrightarrow a$=$\overrightarrow b$

查看答案和解析>>

同步练习册答案