分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)利用绝对值三角不等式求得,|x-1|+|x-5|得最小值,|x-2|+|x-4|得最小值,|x-3|的最小值,可得f5(x)的最小值.
解答 解:(1)不等式f2(x)<x+1,即|x-1|+|x-2|<x+1,
∴$\left\{\begin{array}{l}{x<1}\\{1-x+2-x<x+1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{1≤x≤2}\\{x-1+(2-x)<x+1}\end{array}\right.$ ②,或 $\left\{\begin{array}{l}{x>2}\\{x-1+x-2<x+1}\end{array}\right.$ ③.
解①求得$\frac{2}{3}$<x<1,解②求得1≤x≤2,解③求得2≤x<4.
综上可得,不等式的解集为{x|$\frac{2}{3}$<x<4}.
(2)∵f5(x)=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|,
∵|x-1|+|x-5|≥|x-1-(x-5)|=4,当且仅当1≤x≤5时,取等号,即当x∈[1,5]时,|x-1|+|x-5|≥取得最小值为4;
|x-2|+|x-4|≥|x-2-(x-4)|=2,当且仅当2≤x≤4时,取等号,即当x∈[2,4]时,|x-2|+|x-4|≥取得最小值为2;
对于|x-3|.只有当x=3时,取得最小值为0.
综上可得,只有当x=3时,f5(x)=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|取得最小值为4+2+0=6.
点评 本题主要考查绝对值不等式的解法,绝对值三角不等式的应用,求函数的最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a-b=0的充要条件是$\frac{a}{b}$=1 | B. | 若p∧q为假,则p∨q为假 | ||
| C. | ?x0∈R,|x0|<0 | D. | ?x∈R,2x>x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.2 | B. | 0.4 | C. | 0.6 | D. | 0.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,则λ1=λ2=0 | |
| B. | 若$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow a$在$\overrightarrow b$上的投影为$|\overrightarrow a|$ | |
| C. | 若$\overrightarrow a⊥\overrightarrow b$,则$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$ | |
| D. | 若$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c$,则$\overrightarrow a$=$\overrightarrow b$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com