精英家教网 > 高中数学 > 题目详情
已知A,B,C点在球O的球面上,∠BAC=90°AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离,球
分析:由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=
2
,则OA可求,再由球的表面积公式即可得到.
解答: 解:如图所示:取BC的中点M,
则球面上A、B、C三点所在的圆即为⊙M,
连接OM,则OM即为球心到平面ABC的距离,
在Rt△OMB中,OM=1,MB=
2

∴OA=
OM2+MB2
=
3
,即球的半径R为
3

∴球O的表面积为S=4πR2=12π.
故答案为:12π.
点评:本题考查球的表面积计算问题,考查球的截面性质,考查运算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,O为坐标原点,点P(-
2
2
3
2
)在椭圆上,且
PF1
PF2
=
1
4
,⊙O是以F1F2为直径的圆,直线l:y=kx+m与⊙O相切,并且与椭圆交于不同的两点A,B.
(1)求椭圆的标准方程;
(2)当
OA
OB
=λ,且满足
2
3
≤λ≤
3
4
时,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)一次函数,且f(f(x))=16x+15,求f(x).
(2)已知函数f(x)二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆4x2+3y2=48的焦点坐标是(  )
A、( 0,±2
7
B、(±2
7
,0 )
C、(0,±2)
D、(±2,0 )

查看答案和解析>>

科目:高中数学 来源: 题型:

一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没在底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球全部被提出水面时,容器内的水面下降的高度是
 
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

设图F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,则该双曲线的离心率为(  )
A、
4
3
B、
5
3
C、
9
4
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

假设△ABC为圆的内接正三角形,向该圆内投一点,则点落在△ABC内的概率(  )
A、
3
3
B、
2
π
C、
4
π
D、
3
3
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式16x-logax<0在(0,
1
4
)
恒成立,则实数a的取值范围(  )
A、(
1
4
,1)
B、(
1
2
,1)
C、[
1
2
,1)
D、[
1
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②已知a>0,b>0,则
a
b
是a>b的充要条件;
③命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题;
④命题“?∈R,|x+4|-|x-1|<k”是真命题,则k>5.
其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案