| A. | $\frac{\sqrt{2}}{6}$ | B. | -$\frac{\sqrt{2}}{6}$ | C. | -$\frac{5\sqrt{2}}{6}$ | D. | $\frac{5\sqrt{2}}{6}$ |
分析 由已知求出tanα,利用三角函数中的恒等变换应用化简$\frac{5si{n}^{2}\frac{α}{2}+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$,进一步转化为正切得答案.
解答 解:由$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=-$\frac{10}{3}$,得$tanα+\frac{1}{tanα}=-\frac{10}{3}$,
即3tan2α+10tanα+3=0,
解得tanα=-3或tanα=$-\frac{1}{3}$,
∵$\frac{3π}{4}$<α<π,∴tanα=$-\frac{1}{3}$,
则$\frac{5si{n}^{2}\frac{α}{2}+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$
=$\frac{5×\frac{1-cosα}{2}+4sinα+11×\frac{1+cosα}{2}-8}{-\sqrt{2}cosα}$
=$\frac{8-\frac{5}{2}cosα+4sinα+\frac{11}{2}cosα-8}{-\sqrt{2}cosα}$
=$\frac{4sinα+3cosα}{-\sqrt{2}cosα}$
=$\frac{4tanα+3}{-\sqrt{2}}$
=$\frac{4×(-\frac{1}{3})+3}{-\sqrt{2}}$
=-$\frac{5\sqrt{2}}{6}$.
故选:C.
点评 本题考查三角函数的化简求值,考查了三角函数中的恒等变换应用,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -m | B. | -n | C. | m | D. | n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 60°或120° | D. | 30°或150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com