精英家教网 > 高中数学 > 题目详情
3.已知cos(2015π+α)=-$\frac{1}{2}$,且α是第四象限角,计算:
(1)sin(2016π-α);
(2)$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)cos(α-2nπ)}$(n∈Z)

分析 由已知求得sinα、cosα的值.
(1)直接利用诱导公式求得答案;
(2)利用诱导公式化简,代入cosα后得答案.

解答 解:由cos(2015π+α)=-$\frac{1}{2}$,且α是第四象限角,得-cosα=-$\frac{1}{2}$,
∴cos$α=\frac{1}{2}$,则sin$α=-\frac{\sqrt{3}}{2}$,
(1)sin(2016π-α)=sin(-α)=-sinα=-(-$\frac{\sqrt{3}}{2}$)=$\frac{\sqrt{3}}{2}$;
(2)$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)cos(α-2nπ)}$=$\frac{sin(π+α)-sin(π-α)}{sinα•cosα}$=$\frac{-2sinα}{sinα•cosα}=-\frac{2}{cosα}$=-4.

点评 本题考查三角函数的化简求值,考查了诱导公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.由方程|z|2-8|z|+15=0所确定的复数在复平面内对应点的轨迹是以原点为圆心,以3和5为半径的两个圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算
(1)${∫}_{-3}^{3}$($\sqrt{9-{x}^{2}}$-x3)dx的值.
(2)${∫}_{-3}^{3}$(|x+1|+|x-1|-4)dx;
(3)${∫}_{a}^{b}$$\sqrt{(x-a)(b-x)}$dx(b>a)
(4)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(sin3xcosx)dx;
(5)${∫}_{1}^{2}$$\frac{1}{x(x+1)}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\frac{3π}{4}$<α<π,$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=-$\frac{10}{3}$,则$\frac{5si{n}^{2}\frac{α}{2}+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$的值为(  )
A.$\frac{\sqrt{2}}{6}$B.-$\frac{\sqrt{2}}{6}$C.-$\frac{5\sqrt{2}}{6}$D.$\frac{5\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式-x2+x-2k<0(k≠0).
(1)若不等式的解集为{x|x<-1,或x>2},求k的值;
(2)若不等式的解集为R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.△ABC中,b-a=c-b=1,且C=2A,则cosC=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,a1=81,公差d=-7,则前(  )项和最大.
A.13B.12C.11D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2=bc+b2,C=75°,则B为(  )
A.35°B.45°C.65°D.25°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线在左、右焦点分别为F1、F2,在左支上过F1的弦AB的长为5,若2a=8,那么△ABF2的周长是(  )
A.16B.18C.21D.26

查看答案和解析>>

同步练习册答案